首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究外源性降钙素基因相关肽(calcitonin gene-relate peptide,CGRP)对SD大鼠骨髓来源间充质干细胞(BMSCs)增殖和成骨分化功能的影响。方法:采用贴壁法分离骨髓间充质干细胞,扩增传代至第三代,根据分组,培养体系中添加含不同浓度(10-11~10-6mol/L)CGRP的条件培养液,WST-1法检测细胞增殖能力;碱性磷酸酶染色及钙结节染色法观察CGRP诱导BMSCs向成骨细胞分化、矿化的效果。采用RT-PCR方法检测碱性磷酸酶(ALP)、I型胶原(COLL-I)、BMP-2、RunX2、骨粘连蛋白(Osteonectin,ON)等成骨相关细胞因子mRNA的表达。结果:增殖率测定CGRP组各浓度均较对照组增加,且呈剂量依赖关系,CGRP浓度大于1×10-10mol/L时差异有显著性(P<0.05);碱磷酶染色与钙结节染色结果显示,CGRP组均有阳性显色,对照组无显色或显色不明显。CGRP组的细胞因子表达较对照组显著升高(P<0.05)。结论:适当浓度的CGRP能够直接促进体外培养的BMSCs增殖,并可短期内诱导其在向成骨细胞分化。CGRP可能在骨修复及骨重建中发挥重要的作用...  相似文献   

2.
The aging of many mammalian tissues is associated with replicative decline in somatic stem cells. Postponing this decline is a direct way of anti-aging. Bone marrow-derived multipotent stromal cells (BMSCs) hold promise for an increasing list of therapeutic uses due to their multilineage potential. Clinical application of BMSCs requires abundant cells that can be overcome by ex vivo expansion of cells, but often facing the replicative senescence problem. We demonstrated that taurine exhibited anti-replicative senescence effect on rat BMSCs by promoting colony forming unit-fibroblast formation and cell proliferation, shortening cell population doubling time, enormously inhibiting senescence-associated beta-galactosidase activity and slowing the loss of differentiation potential, while having no significant effect on the maximum passage number and total culture time, and slight influences on the cell surface CD molecules expressions. Taurine is a quite safe antioxidant and nutrient extensively used in food addition and clinical treatment. These suggested that taurine is a promising anti-replicative senescence additive for ex vivo expansion of BMSCs in experimental and clinical cell therapies.  相似文献   

3.
Mesenchymal stem cells (MSCs) were treated with bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) dose-dependently and time-dependently. Together they caused a strong synergistic effect on the osteogenic differentiation of MSCs, with lower concentrations of each factor being enough to show the synergistic promotion (50 ng BMP-2/ml, 1 ng VEGF/ml and 10 ng bFGF/ml). When both VEGF and bFGF were added in the early proliferating stage (the first 7 days) and BMP-2 was added in the late differentiation stage (the last 7 days), osteogenic differentiation of MSCs could be enhanced more effectively.  相似文献   

4.
Transplantation of bone marrow (BM)-derived endothelial progenitor cells (EPCs) has been reported to improve liver fibrosis, but there is no direct evidence for the mechanism of improvement. We investigated the mechanism in vitro by coculturing BM-derived EPCs with activated hepatic stellate cells (HSCs) to mimic the hepatic environment. EPCs and HSCs were cultured alone and indirectly cocultured at a 1:1 ratio in a Transwell system. The characteristics of HSCs and EPCs were examined at different time points. An invasion assay showed the time-dependent effect on degradation of the extracellular matrix (ECM) layer in EPCs cultured alone. Real-time PCR and enzyme-linked immunosorbent assay analysis revealed that EPCs served as a source of matrix metalloproteinase-9 (MMP-9), and MMP-9 expression levels significantly increased during the 2 d of coculture. CFSE labeling showed that EPCs inhibited proliferation of HSCs. Annexin-V/PI staining, erminal deoxynucleotidyl transferase X-dUTP nick end labeling analysis, and (cleaved) caspase-3 activity revealed that EPCs promoted HSC apoptosis. However, the proliferation and apoptosis of EPCs were unaffected by cocultured HSCs. Coculturing increased the expression of inducible nitric oxide synthase, vascular endothelial growth factor, and hepatocyte growth factor (HGF) in EPCs, promoted differentiation of EPCs, and reduced the expression of types I and III collagens and transforming growth factor beta 1. Knockdown of HGF expression attenuated EPC-induced activation of HSC apoptosis and profibrotic ability. These findings demonstrated that BM-derived EPCs could degrade ECM, promoting activated HSC apoptosis, suppressing proliferation and profibrotic ability of activated HSCs. HGF secretion by EPCs plays a key role in inducing activated HSC apoptosis and HSC profibrotic ability.  相似文献   

5.
Mast cells (MCs) are responsible for the innate immune response. Rat MCs are more suitable than mouse MCs as models of specific parasite infection processes and ovalbumin-induced asthma. Rat peritoneum-derived MCs and RBL-2H3 cells (an MC cell line) are widely used in disease studies. However, the application of rat bone marrow-derived MCs (BMMCs) are poorly documented in terms of the methodology of rat BMMC isolation. Here, we describe a relatively rapid, efficient, and simple method for the cultivation of rat BMMCs. As compared to previous protocols, rat BMMCs produced with the proposed protocol exhibited advantages in differentiation, proliferation, lifespan, and functionality, which should prove useful for studies of mucosal MC diseases in specific rat models.  相似文献   

6.
Communication between nerves and mast cells is a prototypic demonstration of neuroimmune interaction. However, whether mast cell activation occurs as a direct response to neuronal activation or requires an intermediary cell is unclear. Addressing this issue, we used an in vitro coculture approach comprising cultured murine superior cervical ganglia and rat leukemia basophilic cells (RBLs; possesses properties of mucosal-type mast cells). Following loading with the calcium fluorophore, Fluo-3, neurite-RBL units (separated by <50 nm) were examined by confocal laser scanning microscopy. Addition of bradykinin, or scorpion venom, dose-dependently elicited neurite activation (i.e., Ca2+ mobilization) and, after a lag period, RBL Ca2+ mobilization. Neither bradykinin nor scorpion venom had any direct effect on the RBLs in the absence of neurites. Addition of a neutralizing substance P Ab or a neurokinin (NK)-1 receptor antagonist, but not an NK-2 receptor antagonist, dose-dependently prevented the RBL activation that resulted as a consequence of neural activation by either bradykinin or scorpion venom. These data illustrate that nerve-mast cell cross-talk can occur in the absence of an intermediary transducing cell and that the neuropeptide substance P, operating via NK-1 receptors, is an important mediator of this communication. Our findings have implications for the neuroimmune signaling cascades that are likely to occur during airways inflammation, intestinal hypersensitivity, and other conditions in which mast cells feature.  相似文献   

7.
MSCs (mesenchymal stem cells) may be promising seed cells for tissue regeneration because of their self-renewal and multi-differentiation potential. Shh (sonic hedgehog) is involved in the skeletal formation during embryo development and skeletal regeneration. However, how Shh regulates the biological characteristics of BM-MSCs (bone marrow-derived MSCs) is poorly understood. We have investigated the effect of rShh-N (recombinant N-terminal Shh) on the proliferation and osteogenic differentiation of rBM-MSCs (rat BM-MSCs) in vitro. rBM-MSCs were treated with rShh-N at concentrations up to 200 ng/ml. Proliferation and colony-forming ability of rBM-MSCs were increased in a dose-dependent manner. rShh-N increased the ratio of cells in S and G2/M phase, as well as the number of Ki-67+ cells. In addition, ALP (alkaline phosphatase) activity and matrix mineralization were enhanced by 200 ng/ml rShh-N. Real-time PCR showed that rShh-N (200 ng/ml) up-regulated the expression of genes encoding Cbfa-1 (core-binding factor α1), osteocalcin, ALP and collagen type I in rBM-MSCs. This information reveals some potential of rShh-N in the therapeutics of bone-related diseases.  相似文献   

8.
The ubiquitin protease pathway plays important role in human bone marrow-derived mesenchymal stem cell (hBMSC) differentiation, including osteogenesis. However, the function of deubiquitinating enzymes in osteogenic differentiation of hBMSCs remains poorly understood. In this study, we aimed to investigate the role of ubiquitin-specific protease 53 (USP53) in the osteogenic differentiation of hBMSCs. Based on re-analysis of the Gene Expression Omnibus database, USP53 was selected as a positive regulator of osteogenic differentiation in hBMSCs. Overexpression of USP53 by lentivirus enhanced osteogenesis in hBMSCs, whereas knockdown of USP53 by lentivirus inhibited osteogenesis in hBMSCs. In addition, USP53 overexpression increased the level of active β-catenin and enhanced the osteogenic differentiation of hBMSCs. This effect was reversed by the Wnt/β-catenin inhibitor DKK1. Mass spectrometry showed that USP53 interacted with F-box only protein 31 (FBXO31) to promote proteasomal degradation of β-catenin. Inhibition of the osteogenic differentiation of hBMSCs by FBXO31 was partially rescued by USP53 overexpression. Animal studies showed that hBMSCs with USP53 overexpression significantly promoted bone regeneration in mice with calvarial defects. These results suggested that USP53 may be a target for gene therapy for bone regeneration.Subject terms: Cell signalling, Mesenchymal stem cells  相似文献   

9.
Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.  相似文献   

10.
11.
We performed this study to investigate the effects of recombinant human bone sialoprotein (BSP) on the proliferation and osteodifferentiation of human BMSCs(hBMSCs). The hBMSC cultures were divided into 4 groups: control group, 10−10 M BSP group (BSP group), osteogenic medium group (10 nM dexamethasone, 10 mM β-glycerophosphate, and 50 mg/L ascorbic acid, OM group) and BSP + OM group (OM plus10−10 M BSP). Compared with the control group, cell growth of the other three groups slowed down, while fluorescence at the G0/G1 phase increased. After 28 days, in the OM group and the BSP + OM group, the proportion of STRO-1-positive cells decreased by 22.7% and 38.4% and ALP activity increased by 50% and 71.43%, respectively. CD271 mRNA expression decreased while Cbfa1, osteocalcin and osterix mRNA levels increased in the OM and BSP + OM groups, and the mRNA level change was greater in the BSP + OM group. After 28 days, the number of nodules in the BSP + OM group was 112.5% more than that in the OM group, but nodules did not formed in the control or BSP group. We conclude that BSP is capable of inhibiting hBMSCs proliferation and enhancing their osteogenic differentiation and mineralization in the presence of OM.  相似文献   

12.
Experiments were performed to examine the influence of interneuronal interactions on the expression of neurotransmitter receptors by developing mammalian CNS neurons. Receptors for the neuropeptide, substance P (SP), were assayed on embryonic rat motoneurons and other spinal cord neurons developing in vitro by the binding of 125I-SP to live neurons. Scatchard analysis showed the presence of high-affinity binding sites, and binding competition assays using SP, neurokinin A, or neurokinin B indicated that the high-affinity 125I-SP binding sites on these neurons were type NK1 tachykinin receptors, or SP receptors (SPRs). Neurons in the spinal cords of rats at Embryonic Day 14 displayed no SPRs. Cell-surface SPRs were detected on spinal cord neurons within 24 hr after they were placed in culture, however, and the level of 125I-SP binding increased for several days. SPRs were assayed on spinal motoneurons that had been identified by retrograde labeling with a fluorescent tracer, isolated in high purity by fluorescence-activated cell sorting (FACS), and maintained in culture. Motoneurons grown in isolation from other neurons developed SPRs in vitro along the same time course as neurons in heterogeneous spinal cord cultures. These results show that rat spinal motoneurons can express SPRs early in their development, and they suggest that the initial expression of SPRs by developing motoneurons does not require interaction with other neurons.  相似文献   

13.
刘铮  代继宏  符州  冯琳琳 《生物学杂志》2011,28(2):25-27,31
用重组小鼠粒细胞-巨噬细胞集落刺激因子(rmGM-CSF)和重组小鼠白细胞介素4(rmIL-4)体外诱导小鼠骨髓细胞分化为树突状细胞,进行形态学变化观察,分析细胞表面分子,刺激T细胞增殖,探讨小鼠骨髓源树突状细胞(BMDC)体外诱导培养并进行初步鉴定。体外培养9d后BMDC可达80%以上,光镜下可见典型的树突状细胞形态。清楚表达成熟期主要表面标志物,可显著刺激同种异体混合淋巴细胞增殖。获得了较高纯度的BMDC,避免了使用传统磁珠分离方法所带来的成本高,操作复杂,产出率低的弊端,为研究BMDC功能以及运用开展下游实验提供材料。  相似文献   

14.
Human bone marrow-derived mesenchymal stem cells (hMSCs) are a population of pluripotent cells. They can differentiate into different embryonic layer cells as osteoblasts, adipocytes, chondrocytes, myoblasts, neurocytes, etc. However, there are only few reports with regard to differentiate hMSCs into epidermal cells in vitro. In this study, we want to investigate the feasibility of inducing hMSCs into epidermal-like cells under specific medium in vitro. hMSCs in specific inducing medium expressed the early markers of epidermal cell lineage, P63, cytokeratin19 (CK19), the late differentiated marker, the pan-cytokeratin, and another early marker, the beta1-integrin, which up-regulated remarkably in inducing medium. Their morphologies were changed from spindle-like fibroblastic appearances to oblate or irregular shapes under phase contrast microscopy. The hemidesmosome structure was found using the transmission electron microscope. All these data suggested that, under certain conditions, hMSCs have the potential to differentiate into epidermal-like cells. It will be of great accordance in the study of the multipotential property of hMSCs.  相似文献   

15.
Very low molecular weight chitooligosaccharide (COS, 1.4 kDa) and high molecular weight chitosan (1000 kDa) were comparatively studied in terms of physical and biological characteristics. Thin films of COS, chitosan and gelatin were prepared and crosslinked by dehydrothermal treatment at 140 °C for 24 h. COS film presented more hydrophilic property than chitosan film. Behaviors of rat adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (MSCs) were investigated on COS and chitosan films, comparing to those on gelatin film. The results on cell spreading suggested that both ASCs and MSCs preferred to attach on COS film than chitosan film with 6–7 times larger cell areas. Numbers of both stem cells proliferated on COS film were approximately 3-fold higher than those on chitosan film. In addition, COS film enhanced osteogenic differentiating potential of MSCs, as observed from the alkaline phosphatase activity and calcium deposition. Therefore, in this work, COS was shown to be a more favorable material for the growth and osteogenic differentiation of both ASCs and MSCs, compared to high molecular weight chitosan.  相似文献   

16.
17.

Purpose

It has been reported that mesenchymal stem cells (MSCs) can differentiate into neurons as an effect of adding extraneous factors, such as β-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanisole. However, many of these compounds could harm MSCs and the human body, which restricts their application. We examined whether MSCs could differentiate into neuron-like cells under the influence of natural growth factors, such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF-1, and neurotrophin 3 (NT-3).

Methods

MSCs were collected from rat bone marrow using the plastic adherent selection method, and induced in culture media to which was added different combinations of EGF, bFGF, IGF-1 and NT-3. The shape of the induced cells was observed daily and the differentiated cells were characterized by immunocytochemistry with neural-specific markers.

Result

With bFGF and NT-3 in the medium, the induced cells became slim, gradually developing protruding processes, with parts of them forming net- or ring-like structures. Cells with processes showed expression of microtubule-associated protein 2 (MAP2) and nestin (NES), which was enhanced when bFGF and NT-3 were added in combination. However, with IGF-1 added to the medium, there was no evidence of neurite-like processes or any net- or ring-like structures; the MSCs retained their round or slim shape.

Conclusion

Using natural cytokines in vitro, MSCs successfully differentiated into neuron-like cells. Our study confirms that bFGF and NT-3 exerts a neural-induction effect on the differentiation of MSCs, but that IGF has a rather negative effect on this process.
  相似文献   

18.
Bone marrow-derived mesenchymal stem cells (BMD-MSCs) are of great interest for tissue engineering, but require expansion before they can be used for therapeutic applications. We compared three different culture techniques for their potential for large scale expansion of rat BMD-MSCs, i.e. monolayer cultures, stirred suspension cultures and pour-off cultures, and found that pour-off cultures supported the biggest expansion in BMD-MSCs as measured by the fibroblastic-colony forming unit assay (CFU-f). BMD-MSCs expanded in stirred suspension cultures stopped proliferating altogether and, although monolayer cultures allowed for expansion of BMD-MSCs, they favoured a differentiated phenotype over uncommitted MSCs. Only BMD-MSCs expanded in pour-off cultures were able to differentiate into both osteoblastic and adipocytic lineages and maintain CFU-f numbers. These data suggest that pour-off cultures are a viable method of BMD-MSC expansion.  相似文献   

19.
This study concerns the cytogenetic stability of in vitro human bone marrow-derived mesenchymal stem cells (MSCs) in primary culture and after passaging. Bone marrow samples were collected from seven brain malfunction patients involved in autologous MSC transplantation trials. Chromosome preparations from primary MSC cultures and after 3 passages were analyzed by conventional staining and G-banding techniques. All MSCs showed normal diploid karyotypes, 46 XY or 46 XX, without aneuploidy or polyploidy; chromosome structural abnormalities were not detected. The results indicate that the in vitro cultured MSCs retained normal cytogenetics before being transplanted back into the patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号