首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bacterial and archaeal diversity in surface soils of three coal-fire vents was investigated by T-RFLP analysis and clone libraries of 16S rRNA genes. Soil analysis showed that underground coal fires significantly influenced soil pH, moisture and NO3 ? content but had little effect on other elements, organic matter and available nutrients. Hierarchical cluster analysis showed that bacterial community patterns in the soils were very similar, but abundance varied with geographic distance. A clone library from one soil showed that the bacterial community was mainly composed of Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Actinobacteria, and unidentified groups. Of these, Firmicutes was the most abundant, accounting for 71.4 % of the clones, and was mainly represented by the genera Bacillus and Paenibacillus. Archaeal phylotypes were closely related to uncultivated species of the phyla Crenarchaeota (97.9 % of clones) and Thaumarchaeota (2.1 %). About 28 % of archaeal phylotypes were associated with ammonia oxidization, especially phylotypes that were highly related to a novel, ammonia-oxidizing isolate from the phylum Thaumarchaeota. These results suggested that microbial communities in the soils were diverse and might contain a large number of novel cultivable species with the potential to assimilate materials by heterotrophic metabolism at high temperature.  相似文献   

2.
Total of 272 crude oil-degrading bacteria were isolated from seven locations along the coast of Kuwait. The analysis of the 16S rDNA sequences of isolated bacteria revealed the predominance of six bacterial genera: Pseudomonas, Bacillus, Staphylococcus, Acinetobacter, Kocuria and Micrococcus. Investigation of the factors associated with bacterial predominance revealed that, dominant culturable crude oil-degrading bacteria were better crude oil utilizers than the less frequently occurring isolates. Bacterial predominance was also influenced by the ability of bacteria to adapt to the level of organic content available. Predominant culturable bacteria constituted 89.7–54.2% of the total crude oil-degrading bacterial communities. Using 16S-RFLP analyses to assess the diversity of the dominant crude oil-degrading bacterial genera, four phylotypes of Pseudomonas sp. and seven phylotypes of Bacillus sp. were determined. This suggested high degree of diversity of crude oil-degrading bacterial population at the strain level, but low diversity at the genus level.  相似文献   

3.
The diversity and abundance of culturable bacteria in Kongsfjorden water (15 stations) and sediments (12 stations) were studied. Viable numbers ranged between 105–106 CFU l?1 in water and 102–104 CFU g?1 in the sediments. A total of 291 and 43 bacterial isolates were retrieved from the water (KJF) and sediments (FS), respectively. Based on 16S rRNA gene sequence similarities, the KJF and FS isolates were grouped into 49 and 23 phylotypes, respectively. The KJF and FS phylotypes represented three phyla namely, Actinobacteria, Bacteroidetes, and Proteobacteria. At the genus level, Flavobacterium and Shewanella and at the species level, Pseudoaltermonas arctica and Colwellia psychrerythraea were dominant in the water and sediments, respectively. Most phylotypes were psychrotolerant with upper growth temperature limit of 25–37 °C and tolerated 0.3–2.5 M NaCl and pH values of 5.0–11.0. Majority of the phylotypes produced one or more of the extracellular hydrolytic enzymes amylase, lipase, caseinase, urease, gelatinase, and DNase at 4 and 18 °C, while none were chitinolytic. Few of the FS phylotypes exhibited extracellular activity only at 4 or 18 °C. Nine FS and 21 KJF isolates were pigmented. The predominant cellular fatty acids were unsaturated, branched, and modified fatty acids, which are unique to cold-adapted bacteria.  相似文献   

4.
Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l?1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4?±?0.5?×?103 to 2.0?±?0.18?×?106 cells ml?1 and 6.6?±?0.51?×?102 to 4.9?±?0.36?×?104 cell ml?1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.  相似文献   

5.
The Middle East Dust storms have greatly affected the south and west parts of Iran during the last decade. The main purpose of this study was to examine and compare culturable airborne bacteria concentration in particulate matter (PM) during normal, semi-dust, and dust event days in different places and seasons in Ahvaz from November 2011 to May 2012. Sampling was performed every 6 days and on dust event days at different sampling stations. The overall mean concentrations of PM10, PM2.5, and PM1 for the entire study period were 598.92, 114.8, and 34.5 μg/m3, respectively. The PM concentrations during the dust event days were much higher than normal and semi-dust event days. The highest mean PM concentrations were observed in March 2011. The low PM2.5/PM10 ratios indicate that these PM are mostly originating from natural sources such as dust storms. The overall mean concentration of total bacteria during the study period was 620.6 CFU/m3. The greatest bacterial concentrations were observed during dust event days and at areas with high traffic and more human activities compared with normal days and greener areas. The percentage of gram-positive bacteria was significantly higher than that during the study period (89 vs 11 %). During this study, 26 genera of culturable bacteria were identified from all the sampling stations. The most dominant genera in all sampling stations were Streptomyces, Bacillus, Kocuria, Corynebacterium, and Paenibacillus. The results also showed that there were positive correlations between PM and bacterial concentrations during the study period (p < 0.05).  相似文献   

6.
In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.  相似文献   

7.
Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Ålesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 × 103–1.3 × 104 cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Ålesund also was very similar (0.6 × 104 and 3.4 × 104, respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4–37°C), in their tolerance to NaCl (0.3–2 M NaCl) and growth pH range (2–11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20°C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5°C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.  相似文献   

8.
Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.  相似文献   

9.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

10.
The abundance and diversity of chemotactic heterotrophic bacteria associated with Arctic cyanobacteria was determined. The viable numbers ranged between 104 and 106 cell g?1 cyanobacterial biomass. A total of 112 morphotypes, representing 22 phylotypes based on their 16S rRNA sequence similarity were isolated from the samples. All the phylotypes were Gram-negative with affiliation to the proteobacterial and bacteroidetes divisions. Among the 22 phylotypes, 14 were chemotactic to glucose. Majority of the phylotypes were psychrotolerant showing growth up to 30 °C. Representatives of Alphaproteobacteria, the genus Flavobacterium and the gammaproteobacterial Alcanivorax sp, were psychrophilic with growth at or below 18 °C. A significant percentage of phylotypes were pigmented (~68 %), rich in unsaturated membrane fatty acids and tolerated pH values and NaCl concentrations between 5.0–8.0 and 0.15–1.0 M, respectively. The percentages of phylotypes producing extracellular cold-active enzymes at 4 °C were amylase (18.18 %), lipase and urease (45.45 %), caseinase (59.09 %) and gelatinase (31.8 %).  相似文献   

11.
In situ analysis of the 16S rRNA genes from bacterial mats of five hydrothermal springs (36–58°C) in the Uzon caldera (Kamchatka, Russia) was carried out using clone libraries. Eight clone libraries contained 18 dominant phylotypes (over 4–5%). In most clone libraries, the phylotype of the green sulfur bacterium Chlorobaculum sp. was among the dominant ones. The phylotypes of the green nonsulfur bacteria Chloroflexus and Roseiflexus and of purple nonsulfur bacteria Rhodoblastus, Rhodopseudomonas, and Rhodoferax were also among the dominant ones. Cyanobacteria were represented by one dominant phylotype in a single spring. Among nonphototrophic bacteria, the dominant phylotypes belonged to Sulfyrihydrogenibium sp., Geothrix sp., Acidobacterium sp., Meiothermus sp., Thiomonas sp., Thiofaba sp., and Spirochaeta sp. Three phylotypes were not identified at the genus level. Most genera of phototrophic and nonphototrophic organisms corresponding to the phylotypes from Uzon hydrotherms have been previously revealed in the hydrotherms of volcanically active regions of America, Asia, and Europe. These results indicate predominance of bacterial mats carrying out anaerobic photosynthesis in the hydrotherms of the Uzon caldera.  相似文献   

12.
The microbial community dynamics play an important role during Massa Medicata Fermentata (MMF) fermentation. In this study, bacterial and fungal communities were investigated based on the culture-dependent method and polymerase chain reaction-denaturing gradient gel electrophoresis analysis. Meanwhile the dynamic changes of digestive enzyme activities were also examined. Plating results showed that MMF fermentation comprised two stages: pre-fermentation stage (0–4 days) was dominated by bacterial community and post-fermentation stage (5–9 days) was dominated by fungal community. The amount of bacteria reached the highest copy number 1.2?×?1010 CFU/g at day 2, but the fungi counts reached 6.3?×?105 CFU/g at day 9. A total of 170 isolates were closely related to genera Enterobacter, Klebsiella, Acinetobacter, Pseudomonas, Mucor, Saccharomyces, Rhodotorula, and Amylomyces. DGGE analysis showed a clear reduction of bacterial and fungal diversity during fermentation, and the dominant microbes belonged to genera Enterobacter, Pediococcus, Pseudomonas, Mucor, and Saccharomyces. Digestive enzyme assay showed filter paper activity; the activities of amylase, carboxymethyl cellulase, and lipase reached a peak at day 4; and the protease activity constantly increased until the end of the fermentation. In this study, we carried out a detailed and comprehensive analysis of microbial communities as well as four digestive enzymes' activities during MMF fermentation process. The monitoring of bacterial and fungal biodiversity and dynamics during MMF fermentation has significant potential for controlling the fermentation process.  相似文献   

13.
The occurrence and distribution of an actinobacteria group of bacteria capable of dissolving insoluble phosphates were investigated in this study in marine environments, especially in sediments of Chorao Island, Goa Province, India. A total of 200 bacterial isolates of actinobacteria was isolated. All isolates were screened for phosphate-solubilizing activity on Pikovskaya’s agar. Thirteen different isolates exhibiting maximum formation of halos (zone of solubilization) around the bacterial colonies were selected for quantitative estimations of P-solubilization. Quantitative estimations for P-solubilization were analyzed for up to 10 days at intervals of 24 h. Maximum solubilization from 89.3 ± 3.1 to 164.1 ± 4.1 μg ml?1 was observed after 6 days of incubation in six of all isolates, while the isolate NII-1020 showed maximum P-solubilization. The increase in solubilization coincided with the drop in pH. Many of these species showed wide range of tolerance to temperature, pH, and salt concentrations. Further, 16S rRNA gene sequence analyses were carried to identify the bacterial groups which are actively solubilized phosphate in vitro. Gene sequencing results reveal that all isolates were clustered into six different actinobacterial genera: Streptomyces, Microbacterium, Angustibacter, Kocuria, Isoptericola, and Agromyces. The presence of phosphate-solubilizing microorganisms and their ability to solubilize phosphate were indicative of the important role played by bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.  相似文献   

14.
Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.  相似文献   

15.
Anaerobic ammonium oxidation (anammox) is believed to be an important sink for fixed inorganic nitrogen in terrestrial and aquatic ecosystems, and many studies have reported that macroscale oxic–anoxic interfaces, such as riparian zones, were hotspots of anammox reaction. However, no research has linked microscale interfaces with the anammox process in natural environments. This study provides evidence for the presence of anammox bacteria and potential anammox activity on the suspended sediment (SPS) in the oxic water of the Yellow River. The anammox bacteria in the overlying water were mainly attached to SPS. The abundance of anammox bacteria in the overlying water was positively correlated with SPS concentration (R 2 = 0.97, P < 0.01), with abundance ranging from 9.5 × 102 to 1.5 × 104 hydrazine synthase gene copies per g of SPS. Phylogenic analysis of anammox bacteria revealed that the SPS phase was dominated by Candidatus Brocadia. Candidatus Scalindua genera was detected in this study with a conductivity of 1100 μS cm?1. Moreover, \(^{15} {\text{NH}}_{4}^{ + }\)-amended anaerobic incubation of the overlying water showed that the average potential anammox activity was 0.076 nmol-N L?1 day?1. The 15N labeling simulation experiments demonstrated the occurrence of anammox in the oxic water of the Yellow River. This study suggests that the anammox process at the SPS–water interface might be a non-negligible pathway for the loss of fixed nitrogen in natural freshwaters, but this remains to be determined in further studies.  相似文献   

16.
The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this ‘engineered riparian system’. The results demonstrated that stage 1 of this system accounted for 41–51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m2/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m2/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.  相似文献   

17.
A Gram-negative, short-rod-shaped bacterial strain with gliding motility, designated as DG5AT, was isolated from a rice field soil in South Korea. Phylogenic analysis using 16S rRNA gene sequence of the new isolate showed that strain DG5AT belong to the genus Spirosoma in the family Spirosomaceae, and the highest sequence similarities were 95.5 % with Spirosoma linguale DSM 74T, 93.4 % with Spirosoma rigui WPCB118T, 92.8 % with Spirosoma luteum SPM-10T, 92.7 % with Spirosoma spitsbergense SPM-9T, and 91.9 % with Spirosoma panaciterrae Gsoil 1519T. Strain DG5AT revealed resistance to gamma and UV radiation. Chemotaxonomic data showed that the most abundant fatty acids were summed feature C16:1 ω7c/C16:1 ω6c (36.90 %), C16:1 ω5c (29.55 %), and iso-C15:0 (14.78 %), and the major polar lipid was phosphatidylethanolamine (PE). The DNA G+C content of strain DG5AT was 49.1 mol%. Together, the phenotypic, phylogenetic, and chemotaxonomic data supported that strain DG5AT presents a novel species of the genus Spirosoma, for which the name Spirosoma radiotolerans sp. nov., is proposed. The type strain is DG5AT (=KCTC 32455T = JCM19447T).  相似文献   

18.
Considerable evidence suggests that the gut microbiota is complex in many mammals and gut bacteria communities are essential for maintaining gut homeostasis. To date the research on the gut microbiota of donkey is surprisingly scarce. Therefore, we performed high-throughput sequencing of the 16S rRNA genes V5–V6 hypervariable regions from gut fecal material to characterize the gut microbiota of healthy donkeys and compare the difference of gut microbiota between male and female donkeys. Sixty healthy donkeys (30 males and 30 females) were enrolled in the study, a total of 915,691 validated reads were obtained, and the bacteria found belonged to 21 phyla and 183 genera. At the phylum level, the bacterial community composition was similar for the male and female donkeys and predominated by Firmicutes (64 % males and 64 % females) and Bacteroidetes (23 % males and 21 % females), followed by Verrucomicrobia, Euryarchaeota, Spirochaetes, and Proteobacteria. At the genus level, Akkermansia was the most abundant genus (23 % males and 17 % females), followed by Sporobacter, Methanobrevibacter, and Treponema, detected in higher distribution proportion in males than in females. On the contrary, Acinetobacter and Lysinibacillus were lower in males than in females. In addition, six phyla and 15 genera were significantly different between the male and female donkeys for species abundance. These findings provide previously unknown information about the gut microbiota of donkeys and also provide a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in donkey and other animals.  相似文献   

19.
Larvae and juveniles of the macrourid fish Coelorinchus kishinouyei, captured from the near-bottom habitat (ca. 1–10 m above the seafloor) at 186 to 500 m depth in Suruga Bay, Honshu, Japan, were examined for the presence, developmental state, and bacterial colonization of the fish’s internal ventral light organ. The specimens ranged from 3.6 mm to 8.5 mm head length, and all exhibited an external cluster of melanophores expanding anteriorly from around the anus that is thought to indicate the presence of an internal light organ. Histological analysis revealed the presence of a light organ in all examined specimens. In smaller specimens, the light organ was seen as a small nub of tissue associated with the intestine near the anus; the light organ gradually elongated anteriorly in larger specimens to form a bean-shaped structure composed of hollow, finger-like chambers. Bacteria were present within the light organ chambers of some, but not all larvae and all juveniles. In light organs not yet colonized by bacteria, the chambers exhibited a generally uniform appearance over their entire length. In colonized light organs, the bacteria were consistently present at the anterior-most tips of the chambers; furthermore, cells comprising chambers colonized by bacteria were swollen, and upon bacterial colonization the orientation of the chambers began to change from anterior–posterior to dorsal–ventral. The colonizing bacteria were identified as Photobacterium kishitanii based on sequence analysis of the luxA gene. These results suggest that formation of the light organ in C. kishinouyei begins during the fish’s pelagic phase, but that bacterial colonization of the light organ occurs after the larvae have reached the near-bottom habitat. Furthermore, colonization of the nascent light organ by P. kishitanii induces morphogenetic changes in the light organ.  相似文献   

20.
The spatiotemporal distribution of chlorophyll pigments (chloropigments) in the water column of a meromictic lake, Lake Suigetsu (Fukui, Japan), was investigated. Water samples were collected from the central basin of Lake Suigetsu bimonthly between May 2008 and March 2010 at appropriate depths, including the oxic surface, oxic–anoxic interface, and anoxic bottom layers. Chlorophyll a, related to cyanobacteria and eukaryotic phytoplankton, was detected throughout the water column during the years of the study, whereas bacteriochlorophyll e, related to brown-colored green sulfur bacteria, was detected in the anoxic layers below the chemocline at a maximum concentration of 825 μg L?1. The concentration of bacteriochlorophyll e was generally maximal at or just below the chemocline of the lake. The cellular content of bacteriochlorophyll e was estimated to be low in the upper part of the chemocline and tended to increase with increasing water depth. Bacteriochlorophyll a, which was presumably related to purple sulfur bacteria, was only detected at the chemocline during summer and autumn at concentrations of 5.4–16.3 μg L?1. Our analysis of the chloropigment distribution for the two years of the study suggested that brown-colored green sulfur bacteria are the predominant phototroph in the anoxic layers of Lake Suigetsu, and that these play a significant role in the carbon and sulfur cycling of the lake, especially from spring to summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号