首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prostaglandin E2 (PGE2) on the proliferation and differentiation of osteoblastic cells were studied in osteoblast-like cells isolated from adult rat calvaria. Treatment of the cells with PGE2 within the concentration range 10(-8)-10(-5) M resulted in a dose-dependent increase in alkaline phosphatase (ALP) activity, [3H]proline incorporation into collagenase-digestible protein, and mineralized bone nodule (BN) formation, as well as a dose-dependent decrease in [3H]thymidine incorporation into the cells. PGE2 also caused a dose-dependent increase in the intracellular cyclic adenosine monophosphate (cAMP) content, with a maximal effective concentration of 10(-5) M; this effect of PGE2 was mimicked by forskolin, an adenylate cyclase activator. The treatment of adult calvarial cells with forskolin decreased BN formation, ALP activity, and collagen synthesis. These results suggested that cAMP does not have a stimulatory, but rather a suppressive, effect on the differentiation of adult rat calvarial cells. A time-course study of cAMP accumulation showed that both PGE2- and forskolin-induced cAMP reached a maximum at 5 min after the treatment, but the former rapidly returned to the basal level by 40 min, while the latter declined slowly and was still at 70% of the maximal level at 60 min, suggesting that PGE2 activates phosphodiesterase as well as adenylate cyclase. The presence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, reduced the rate of degradation of cAMP formed after PGE2 treatment, suggesting the involvement of calmodulin in the activation of phosphodiesterase. However, PGE2 also caused the production of inositol 1,4,5-triphosphate (IP3) and an elevation of the intracellular Ca2+ concentration ([Ca2+]i), both of which peaked at 15 s and returned to the basal level within 1 min. Submaximal responses of the IP3 production and the [Ca2+]i elevation to PGE2 were obtained at 10(-5) M. W-7 decreased both basal and PGE2-induced ALP activity, collagen synthesis and BN formation, indicating the involvement of Ca2+/calmodulin-dependent protein kinase in the PGE2-induced differentiation of calvarial cells. From these results, we concluded that PGE2 inhibits the proliferation and stimulates the differentiation of calvarial osteoblasts by elevating the [Ca2+]i through the activation of a phosphoinositide turnover, but not via an activation of adenylate cyclase. We also found that BN formation varies, depending on the time of PGE2 addition, suggesting that responsiveness of the cells to PGE2 may change during the culture period.  相似文献   

2.
The rate of multiplication of rat embryo fibroblasts in monolayer culture depends upon the amount of multiplication-stimulating activity in the culture medium, as well as the efficiency of stimulation by and utilization of this activity. Multiplication-stimulating activity is defined by its capacity to stimulate DNA synthesis and cell division in stationary populations of cells. Usually, multiplication stimulating activity is supplied as serum in cell culture media, but rat cells also produce it. A comparison of multiplication of uninfected and Murine Sarcoma virus-converted rat cells showed that converted cells multiplied at a greater rate than did uninfected cells, with the use of less or the same amount of multiplication-stimulating activity; the converted cells produced cells produced an inhibitor of multiplication-stimulating activity, and the efficiency of stimulation of DNA synthesis was similar for uninfected and converted cells. It appears that in the presence of serum the efficiency of utilization of multiplication-stimulating activity is greater for converted cells than for uninfected rat cells.  相似文献   

3.
Primary fetal rat liver cells cultured in medium deficient in, but not free of, arginine in the presence of dialyzed fetal calf serum grow until the final cell density is attained and cells become quiescent in the Go phase of the cell cycle. When growing cells are transferred into arginine free medium, cells become reversibly arrested in Go. Fetal rat liver cells can be induced to synthesize DNA by addition of high levels of arginine to serum free medium. Low arginine levels in the culture medium do not induce cell growth unless serum is present. Serum stimulates arginine uptake in fetal rat liver cells suggesting that serum growth factor(s) act by increasing intracellular arginine levels high enough to initiate the growth cycle. Fractionation of fetal calf serum by gel filtration on G-200 Sephadex yields a partially purified arginine uptake stimulating activity which is eluted from the column in the same fractions that contain fetal rat liver cell growth promoting activity. Insulin induces DNA synthesis in quiescent fetal rat liver cells. Glucagon reverses the stimulatory effects of insulin. N-6,O-2-Dibutyryl adenosine 3:5-cyclic monophosphoric acid (But2c-AMP) (10-minus4 M) and theophilline (10-minus3 M) inhibit arginine uptake and the initiation of DNA synthesis by serum. The role of arginine in the control of DNA synthesis in fetal rat liver cells and the mechanism of action of serum growth factors are discussed.  相似文献   

4.
The effects of thyroid hormone on osteoblastic differentiation and activity were studied in fetal rat calvaria (RC) cells cultured for up to 30 days in medium supplemented with thyroid hormone-depleted serum. In this condition, the cells proliferated and differentiated to form mineralized bone nodules (BN) and expressed osteoblastic markers such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). The continuous presence of triiodothyronine (T3) at 10-9-10-8 M in the medium inhibited the osteoblastic differentiation: 34% decrease in ALP activity on day 12 and 60% decrease in BN formation on day 15 at 10-8 M. T3 at these doses had no effect on the DNA content of RC cells at confluence (day 6). Short-term (48-h) exposure of T3 at 10-9 M or higher decreased ALP activity when RC cells were differentiating (days 7–11). However, when BN formation by the cells had already reached a plateau (day 28), the activity was increased by treatment with T3 at 10-7-10-6 M. OCN production was increased dose dependently by this treatment with T3 (2.1-fold and 1.3-fold of control at 10-8 M on days 11 and 28, respectively). Similar increases were observed in the levels of OCN mRNA. In addition, increases in phosphorylated OPN in the medium (day 11) and mineralized matrix (day 28) were observed (1.5-fold at 10-8-10-6 M), while OPN synthesis and the level of its mRNA were depressed by T3 (60-70% of control at 10-8 M). These results suggest that T3 regulates osteoblastic differentiation and activity depending on the state of cell differentiation: T3 suppresses the differentiation of osteoprogenitor cells to osteoblasts, but enhances the functional activity of mature osteoblasts. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The effects of prostaglandin E(2) (PGE(2)) on the parameters for proliferation and differentiation were studied in calvarial osteoblast-like cells isolated from rats of various ages. In cells not treated with PGE(2), it was found that mineralized bone nodule (BN) formation, alkaline phosphatase (ALP) activity, and the incorporation rate of [(3)H]thymidine into the cells sharply decreased with the age of the cell donor at 6-50 weeks and then remained at a relatively constant level up to 120 weeks. Before studying the effects of PGE(2) on these parameters, we determined the change in the levels of PGE(2) produced by the untreated cells during the culture period and found that the endogenous PGE(2) reached a maximum on the 4th day of the culture, regardless of the cell donor age, followed by a sharp decrease. The endogenous production was blocked by pretreatment with a cyclooxygenase-2 (COX-2) inhibitor, NS-398, indicating the generation of PGE(2) through a COX-2 pathway. The area of BN was effectively suppressed by NS-398 in the cells from 10- to 35-week-old rats, whereas it was enhanced in the cells from 90- to 120-week-old rats. Treatment with PGE(2 )markedly increased the BN formation and the ALP activity in the cells from 4- to 35-week-old rats (defined as young rats). By contrast, PGE(2) decreased [(3)H]thymidine incorporation into the cells from young rats. The area of BN and the ALP activity decreased significantly, whereas [(3)H]thymidine incorporation into the cells increased by 60-80% in the cells of 80- to 120-week-old rats (defined as aged rats). The stimulatory effects on the cell differentiation and the inhibitory effect on the proliferation in the cells from young rats was mimicked by an EP(1) agonist, 17-phenyl-omega-trinor PGE(2), while an EP(2)/EP(4) agonist, 11-deoxy-PGE(1) and an adenylate cyclase activator, forskolin suppressed the differentiation and enhanced the proliferation regardless of the cell donor age. PGE(2), 11-deoxy-PGE(1) and forskolin, but not 17-phenyl-omega-trinor PGE(2) increased cyclic adenosine monophosphate (cAMP) production. Generation of inositol 1, 4,5-triphosphate (IP(3)) was stimulated by 17-phenyl-omega-trinor PGE(2) or PGE(2), but not by 11-deoxy-PGE(1) or forskolin increased cAMP production in the cells from young rats. By contrast, PGE(2 )had little effect on IP(3 )generation in aged rats. From the overall results, we concluded that PGE(2) exerts stimulatory and inhibitory effects on differentiation through the EP(1)-IP(3) pathway and EP(2)/EP(4)-cAMP pathway, respectively, in the cells from young rats. The EP(1)-IP(3) pathway seems to be inactive in the cells from aged rats.  相似文献   

6.
1. Deoxycorticosterone, which does not enhance tryptophan pyrrolase activity, also fails to alter the concentrations of the NAD(P) couples in livers of fed rats, whereas corticosterone increases both pyrrolase activity and dinucleotide concentrations. 2. Starvation of rats increases serum corticosterone concentration, lipolysis, tryptophan availability to the liver, tryptophan pyrrolase activity and liver [NADP(H)]. Glucose prevents all these changes. 3. The beta-adrenoceptor-blocking agent propranolol prevents the starvation-induced lipolysis and the consequent increase in tryptophan availability to the liver, but does not influence the increase in serum corticosterone concentration, liver pyrrolase activity and [NADP(H)]. 4. Actinomycin D, which prevents the starvation-induced increases in liver pyrrolase activity and [NADP(H)], does not affect those in serum corticosterone concentration and tryptophan availability to the liver. 5. Allopurinol, which blocks the starvation-induced enhancement of pyrrolase activity, also abolishes the increases in liver [NADP(H)], but not those in serum corticosterone concentration or tryptophan availability to the liver. 6. It is suggested that liver tryptophan pyrrolase activity plays an important role in NAD+ synthesis from tryptophan in the rat.  相似文献   

7.
8.
The temporal sequence of PTH/PTHrP receptor mRNA, binding, biologic activity, and its dependence on matrix synthesis was determined using MC3T3-E1 preosteoblast-like cells and primary rat calvarial cells in vitro. Osteoblastic cells were induced to differentiate and form mineralized nodules with the addition of ascorbic acid and β-glycerophosphate, and samples were collected from 0–26 days of culture. DNA levels as determined by fluorometric analysis increased 12- and 17-fold during the collection period for both MC3T3-E1 and primary calvarial cells respectively. Steady state mRNA levels for the PTH/PTHrP receptor as determined by northern blot analysis, were initially low for both cell types, peaked at day 4 and 5 for MC3T3-E1 and primary calvarial cells respectively, and declined thereafter. Competition binding curves were performed during differentiation using 125I-PTHrP. The numbers of receptors per μg DNA were greatest at days 3 and 5 for MC3T3-E1 and primary calvarial cells respectively. The biologic activity of the receptor was evaluated by stimulating the cells with 10 nM PTHrP and determining cAMP levels via a binding protein assay. The PTHrP-stimulated cAMP levels increased 5-fold to peak values at day 5 for MC3T3-E1 cells and 6-fold to peak values at day 4 for the primary calvarial cells. Ascorbic acid was required for maximal development of a PTH-dependent cAMP response since ascorbic acid-treated MC3T3-E1 cells had twice the PTH-stimulated cAMP levels as non-treated cells. When the collagen synthesis inhibitor 3,4-dehydroproline was administered to MC3T3-E1 cultures prior to differentiation, there was a subsequent diminution of the PTH/PTHrP receptor mRNA gene expression and numbers of receptors per cell; however, if administered after the initiation of matrix synthesis there was no reduction in PTH/PTHrP receptor mRNA. These findings indicate that the PTH/PTHrP receptor is associated temporally at the level of mRNA, protein, and biologic activity, with a differentiating, matrix-producing osteoblastic cell in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The aim of the study was to investigate the effect of prolonged ACTH administration on quantitative structural changes of the rat adrenal cortex and on function of its cells with particular emphasis on correlation of the results of biochemical estimations with stereologic parameters. Daily injections of 20 micrograms ACTH (Synacthen, Depot) for 35 days results in a marked enlargement of the cortex due to an increase in the volume of all the zones. This increase depends upon hypertrophy and hyperplasia of parenchymal cells. At day 21 of experiment the number of parenchymal cells markedly decreased if compared with day 14, the lost of cells being observed mainly in the zona reticularis. Prolonged ACTH treatment only insignificantly changed serum corticosterone concentration and--if calculated per mg of adrenal weight--did not change adrenal corticosterone concentration and 11 beta-hydroxylase activity and decreased corticosterone output by adrenal homogenate. If expressed per adrenocortical cell or per pair of glands, ACTH increased corticosterone concentration and 11 beta-hydroxylase activity while the drop in corticosterone output occurred only at days 28 and 35 of experiment. The striking differences in and among various functional parameters depicting adrenal steroidogenesis show for necessity--in case of long-term experiments leading to hypertrophy or atrophy of the gland--of using coupled stereologic and biochemical techniques which better evaluate the cytophysiological state of adrenocortical cells.  相似文献   

10.
Factors involved in the uptake of corticosterone by rat liver cells   总被引:1,自引:0,他引:1  
Isolated rat liver cells take up corticosterone rapidly; the initial rates increase with increasing temperature. A plot of the initial rates against the concentration of corticosterone indicated the presence of saturable and nonsaturable uptake systems. The Eadie-Hofstee plot showed the presence of two saturable and one nonsaturable uptake components. The apparent Kt values of the saturable systems were 64 +/- 40 nM (n = 3) and 1085 +/- 313 nM (n = 12). The nonsaturable system, probably diffusion, contributed 12% to the total uptake between 15 and 72 nM corticosterone, the physiological concentration of the free corticosterone in rat serum. Metabolic inhibitors did not influence the uptake of corticosterone. N-Ethylmaleimide, 1-fluoro-2,4-dinitrobenzene and sodium ethyl mercurithiosalicylate (1 mM each) decreased the uptake by 40%. Iodoacetate did not have any influence. Treatment of cells with phospholipase A inhibited the uptake 35--45%. In the presence of cortisone, cortisol, dexamethasone, aldosterone, testosterone, estradiol-17beta and estrone (2 muM each) the uptake decreased 30--50%. The presence of serum proteins in the external medium inhibits the uptake of corticosterone. These results suggest that corticosterone is transported into the cell and is accumulated. Only the free hormone is available for uptake which in turn may be regulated by protein and lipid components in the plasma membrane of the liver cell.  相似文献   

11.
1. The production of cyclic adenosine 3':5'-monophosphate (cyclic AMP) and corticosterone isolated ratadrenal cells was increased by cholera enterotoxin. Both responses were accompanied by a lag period which is characteristic of other known actions of enterotoxin. The duration of the lag period in the production of corticosterone depended on the concentration of enterotoxin; with the maximally stimulating amounts it was 30-45 min. 2. Maximum rates of cyclic AMP and corticosterone synthesis, after the lag period, were constant for at least 1 h. Although the maximum rate of corticosterone formation was the same as that obtained adrenocorticotropic hormone, the maximum rate of cyclic AMP formation was only 8-10% of that with adrenocorticotropic hormone. 3. Pretreatment of the cells with enterotoxin ahd no effect on their subsequent steroidogenic response to maximally stimulating amounts of adrenocorticotropic hormone. 4. Cycloheximide inhibited the effect of both enterotoxin and adrenocorticotropic hormone on corticosterone production. 5. Enterotoxin stimulation of both cyclic AMP and corticosterone formation was dependent on the presence of Ca2+ in the medium although the Ca2+ requirement was not same as that for adrenocorticotropic hormone. Thus, EGTA at concentrations which completely abolished the effect of adrenocorticotropic hormone caused only a partial reduction in the effects of enterotoxin. 6. Exogenously added choleragenoid and gangliosides abolished the effects of enterotoxin without having any significant effect on the response of the cells to adrenocorticotropic hormone. 7. After treatment with neuraminidase, the adrenal cells showed an increased response to enterotoxin in terms of both cyclic AMP and corticosterone formation which was due to a combination of two effects: (a) increased rate of synthesis of both compounds and (b) shortening of the characteristic lag period. This is in sharp contrast to the results obtained with adrenocorticotropic hormone where neuraminidase-treatment made the cells less sensitive to adrenocorticotropic hormone.  相似文献   

12.
Isolated luteal cells, prepared from superovulated rat ovaries by digestion with collagenase, were subjected to density-gradient centrifugation on Percoll to give a more highly purified preparation of luteal cells than has been reported previously. The cells formed progesterone when incubated in vitro; lutropin stimulated this steroidogenesis. Progesterone formation was linear for at least 2 h; a minimal lutropin concentration of 1.0 ng/ml was needed for stimulation and concentrations of 3.0 and 100 ng/ml gave half-maximal and maximal responses respectively. The cells were unresponsive towards hormones other than lutropin. Exposure to lutropin raised the cellular cyclic AMP concentration, and dibutyryl cyclic AMP, but not dibutyryl cyclic GMP, was as effective in stimulating steroidogenesis as was lutropin. Aminoglutethimide, an inhibitor of cholesterol side-chain cleavage, completely blocked progesterone formation by the cells, showing cholesterol side-chain cleavage to be an obligatory step in steroidogenesis by these cells. Neither the activity of 3-hydroxy-3-methylglutaryl-CoA reductase nor the incorporation of radioactively labelled acetate or mevalonate into cholesterol by cells incubated in vitro were detectable unless the rats had been treated previously with 4-aminopyrazolo[3,4-d]pyrimidine. In cells from rats so treated, compactin was found to block almost completely the incorporation of radioactively labelled acetate, but not of mevalonate, into cholesterol, indicating that this inhibitor acts in corpus luteum in the same way as it does in other tissues. In cells from rats not treated with 4-aminopyrazolo[3,4-d]pyrimidine compactin had no effect on progesterone formation in vitro, showing cholesterol biosynthesis to be unnecessary for the rapid steroidogenic response by luteal cells to lutropin.  相似文献   

13.
The purpose of this study was to examine the possibility of separation and quantification of serum alkaline phosphatase (ALP) isozymes in rats by wheatgerm lectin affinity electrophoresis. Cellulose acetate electrophoresis of the liver and bone ALPs without lectin results in overlapping bands, but in the presence of lectin, the mobility of the band of bone enzyme was retarded and well separated from the liver enzyme band. With this affinity electrophoretic method, we determined the serum ALP isozymes in fed and fasting rats grouped by age. As a result, the absolute activity of bone isozyme showed a downward trend with age in the fed and fasting rats. The serum ALP activity was steadily higher in fed rats than in fasting rats, and the increase was due to intestinal ALP isozyme. There was low activity bordering complete absence in liver isozyme under both nutritional conditions. The affinity electrophoretic method provided a rapid, reproducible, and relatively simple technique for further clinical characterization of ALP isozyme in the rat serum.  相似文献   

14.
以7、12,二甲基(α)苯基蒽诱导建立了小鼠鳞癌细胞株,接种至裸鼠中可致高血钙。其细胞培养液经超滤浓缩100倍后,通过DEAE层析、Ultrogel AcA54层析、麦胚凝集素琼脂糖层析及HPLC(C_(18))。初步分离纯化了溶骨因子。这一溶骨因子在体外可显著刺激小鼠颅骨片中~(45)Ca的释出,伴有PGE2的生成及腺苷酸环化酶活性的增高,其分子量约15,000道尔顿。  相似文献   

15.
Multiplication stimulating activity (MSA) has been purified from the conditioned media of rat liver cells in culture by a modification of the procedure of Dulak and Temin. Purified MSA stimulates [3H] thymidine incorporation into DNA in subconfluent, serum starved 3T3 cells. Cell cycle analysis by the flow microfluorometer shows that the [3H] thymidine incorporation data reflects DNA synthesis. MSA also stimulates the multiplication of serum starved subconfluent 3T3 cells. MSA is approximately 10-fold less active in 3T3 cells than in chick embryo fibroblasts in stimulating [3H] thymidine incorporation into DNA. MSA causes a 2–10-fold increase in ornithine decarboxylase (ODC) activity in 3T3 cells and the dose response curve parallels the dose response curve for [3H] thymidine incorporation into DNA. The Km of ODC for ornithine is 0.12 mM. There is a 30% decrease in the activity of ornithine transaminase (OTA) during the time period in which MSA causes an increase in ODC activity. Insulin also stimulates [3H] thymidine incorporation into DNA, cell multiplication and ODC activity over the same concentration range as shown for MSA, however, the extent of stimulation by insulin is less than that observed following MSA addition.  相似文献   

16.
MC3T3-E1 cells in culture exhibit a temporal sequence of development similar to in vivo bone formation. To examine whether the developmental expression of the osteoblast phenotype depends on serum derived factors, we compared the timedependent expression of alkaline phosphatase (ALP)-a marker of osteoblastic maturation- in MC3T3-E1 cells grown in the presence of fetal bovine serum (FBS) or resin/charcoal-stripped (AXC) serum. ALP was assessed by measuring enzyme activity, immunoblotting, and Northern analysis. Growth of MC3T3-E1 cells in FBS resulted in the programmed upregulation of alkaline phosphatase (ALP) post-proliferatively during osteoblast differentiation. In the presence of complete serum, actively proliferating cells during the initial culture period expressed low ALP levels consistent with their designation as pre-osteoblasts, whereas postmitotic cultures upregulated ALP protein, message, and enzyme activity. In addition, undifferentiated early cultures of MC3T3-E1 cells were refractory to forskolin (FSK) stimulation of ALP, but became forskolin responsive following prolonged culture in FBS containing media. In contrast, MC3T3-E1 cells grown in AXC serum displayed limited growth and failed to show a time-dependent increase in alkaline phosphatase. Neither the addition of IGF-I to AXC serum to augment cell number or plating at high density restored the time-dependent upregulation of alkaline phosphatase. Cells incubated in AXC serum for 14 days, however, though expressing low alkaline phosphatase levels, maintained the capacity to upregulate ALP after FBS re-addition or forskolin activation of cAMP-dependent pathways. Such time-dependent acquisition of FSK responsiveness and serum stimulation of ALP expression only in mature osteoblasts indicate the possible presence of differentiation switches that impart competency for a subset of osteoblast developmental events that require complete serum for maximal expression. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Using a modification of the agar gel method for bone marrow culture, serum from various strains of mice has been tested for colony stimulating activity. Ninety percent of sera from AKR mice with spontaneous or transplanted lymphoid leukemia and 40–50% of sera from normal or preleukemic AKR mice stimulated colony formation by C57B1 bone marrow cells. Sera from 6% of C3H and 30% of C57B1 mice stimulated similar colony formation. The incidence of sera with colony stimulating activity rose with increasing age. All colonies were initially mainly granulocytic in nature but later became pure populations of mononuclear cells. Bone marrow cells exhibited considerable variation in their responsiveness to stimulation by mouse serum. Increasing the serum dose increased the number and size of bone marrow cell colonies and with optimal serum doses, 1 in 1000 bone marrow cells formed a cell colony. Preincubation of cells with active serum did not stimulate colony formation by washed bone marrow cells. The active factor in serum was filterable, non-dialysable and heat and ether labile.  相似文献   

18.
The mechanism of calmodulin-stimulated alkaline phosphatase activity was studied in the rat. In calmodulin-treated rats (2.5 micrograms/animal, intraperitoneally) alkaline phosphatase (ALP) activity was elevated 11-fold in the ileum, 1.5-fold in the duodenum and calvarium, 3-fold in serum, and not at all in liver. The elevated ALP activity was prevented by prior treatment with flunarizine, a calcium channel blocker, and by W-7, a calmodulin antagonist. cAMP content in ileum paralleled the timing and changes in ALP activity, but was not elevated in the duodenum or calvarium. Calcium ionophore A23187 and calcitonin treatment also increased ileal, duodenal, and calvarial ALP activity, but by less than the response to calmodulin. All of these treatments caused a 2-fold elevation in serum 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3) levels. Pretreatment of the animals with parathyroid hormone prevented the rise of both ALP activity and of 1,25(OH)2D3. Administration of 1,25(OH)2D3 alone stimulated a different pattern of increased ALP activity, greater in duodenum than ileum. The uptake of 45Ca by calmodulin was also elevated in ileum and calvarium. These data suggest that shifts in calcium movement, perhaps mediated by vitamin D, can alter ALP activity, and may provide a mechanism for rapid control of the secretion of this enzyme.  相似文献   

19.
《Bone and mineral》1990,8(2):145-156
The effects of acidic fibroblast growth factor (aFGF) and epidermal growth factor (EGF) were examined in subconfluent fetal rat calvaria cell cultures, in the presence of 2% serum. Maximal effect of aFGF and EGF on DNA synthesis measured by [3H]thymidine incorporation was observed after 18 h. aFGF stimulated DNA synthesis by 3.5-fold with an ED50 of 0.75 ng/ml while a 2.3-fold EGF stimulation was recorded with an ED50 of 0.067 ng/ml. 5-Bromo-2-deoxyuridine staining showed a higher stimulation of proliferation in the scattered cells than in the cell clusters. An 18 h aFGF or EGF treatment decreased alkaline phosphatase (ALP) activity by 40 and 23%, respectively, as compared with control cultures. This inhibition was more pronounced after 48 h in the presence of the effectors but no modification of the ALP electrophoretic mobility was observed. These data suggest that aFGF is a less potent mitogen than EGF and a higher inhibitor of ALP activity in fetal rat calvaria cell culture.  相似文献   

20.
The effect of glucose and dissolved oxygen in a synthetic medium simulating the standard composition of grape juice on the production of ethyl acetate and isoamyl acetate by a Saccharomyces cerevisiae strain during alcoholic fermentation was studied. The specific in vitro activity of alcohol acetyltransferase (AATase, EC 2.3.1.84) and esterases (ESase, EC 3.1.1.1; hydrolysis and synthesis of esters) in cell-free extracts was also examined. The specific activity of AATase for ethyl acetate was found to peak at the beginning of the exponential growth phase and that for isoamyl acetate at its end. While the glucose concentration only affected the maximum specific activity of AATase, and only slightly, oxygen inhibited such activity, to a greater extent for isoamyl acetate than for ethyl acetate. On the other hand, esterases were found to catalyse the synthesis of ethyl acetate only at a low or medium glucose concentration (50 or 100 g l-1, respectively), and to reach their maximum hydrolytic activity on isoamyl acetate during the stationary growth phase. The highest ethyl acetate and isoamyl acetate concentrations in the medium were obtained with a glucose concentration of 250 g l-1 and semianaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号