首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elderly female hypertensives with arterial stiffening constitute a majority of patients with heart failure with preserved ejection fraction (HFpEF), a condition characterized by inability to increase cardiac stroke volume (SV) with physical exercise. As SV is determined by the interaction between the left ventricle (LV) and its load, we wished to study the role of arterial hemodynamics for exertional SV reserve in patients at high risk of HFpEF. Twenty-one elderly (67 ± 9 yr) female hypertensive patients were studied at rest and during supine bicycle stress using echocardiography including pulsed-wave Doppler to record flow in the LV outflow tract and arterial tonometry for central arterial pressure waveforms. Arterial compliance was estimated based on an exponential relationship between pressure and volume. The ratio of aortic pressure-to-flow in early systole was used to derive characteristic impedance, which was subsequently subtracted from total resistance (mean arterial pressure/cardiac output) to yield systemic vascular resistance (SVR). It was found that patients with depressed SV reserve (NoRes; reserve <15%; n = 10) showed decreased arterial compliance during exercise, while patients with SV reserve ≥15% (Res; n = 11) showed increased compliance. Exercise produced parallel increases in LV end-diastolic volume and arterial volume in Res patients while NoRes patients exhibited a lesser decrease in SVR and a drop in effective arterial volume. Poor SV reserve in elderly female hypertensives is due to simultaneous failure of LV preload and arterial vasodilatory reserves. Abnormal arterial function contributes to a high risk of HFpEF in these patients.  相似文献   

2.
Pulmonary hypertensive disease is assessed by quantification of pulmonary vascular resistance. Pulmonary total arterial compliance is also an indicator of pulmonary hypertensive disease. However, because of difficulties in measuring compliance, it is rarely used. We describe a method of measuring pulmonary arterial compliance utilizing magnetic resonance (MR) flow data and invasive pressure measurements. Seventeen patients with suspected pulmonary hypertension or congenital heart disease requiring preoperative assessment underwent MR-guided cardiac catheterization. Invasive manometry was used to measure pulmonary arterial pressure, and phase-contrast MR was used to measure flow at baseline and at 20 ppm nitric oxide (NO). Total arterial compliance was calculated using the pulse pressure method (parameter optimization of the 2-element windkessel model) and the ratio of stroke volume to pulse pressure. There was good agreement between the two estimates of compliance (r = 0.98, P < 0.001). However, there was a systematic bias between the ratio of stroke volume to pulse pressure and the pulse pressure method (bias = 61%, upper level of agreement = 84%, lower level of agreement = 38%). In response to 20 ppm NO, there was a statistically significant fall in resistance, systolic pressure, and pulse pressure. In seven patients, total arterial compliance increased >10% in response to 20 ppm NO. As a population, the increase did not reach statistical significance. There was an inverse relation between compliance and resistance (r = 0.89, P < 0.001) and between compliance and mean pulmonary arterial pressure (r = 0.72, P < 0.001). We have demonstrated the feasibility of quantifying total arterial compliance using an MR method.  相似文献   

3.
In cirrhosis, hepatic venous pressure gradient is used to measure portal venous and sinusoidal pressures, as well as drug-induced decreases of elevated pressures. The aim of this study was to investigate the influence of hepatic arterial flow (HAF) changes on portal venous perfusion (PVPP) and wedged hepatic venous pressure (WHVP). Normal and CCl4-cirrhotic rats were subjected to a bivascular liver perfusion with continuous measurements of PVPP, WHVP, and hepatic arterial perfusion pressure. Flow-pressure curves were performed with the use of different flows either through the portal vein (PVF: 20-32 ml/min) or HAF (5-15 ml/min). Increases in HAF lead to significant absolute and relative increases in PVPP (P = 0.002) and WHVP (P < 0.001). Absolute changes in HAF correlated to absolute changes in PVPP (cirrhosis: r = 0.64, P < 0.001; control: r = 0.67, P < 0.001) and WHVP (cirrhosis: r = 0.71, P < 0.001; control: r = 0.82, P < 0.001). Changes in PVPP correlated to changes in WHVP due to changes in PVF only in cirrhosis (r = 0.75, P < 0.001), whereas changes in HAF correlated in both cirrhosis (r = 0.92, P < 0.001) and control (r = 0.77, P < 0.001). In conclusion, increases and decreases in HAF lead to respective changes in PVPP and WHVP. This suggests a direct influence of HAF on PVPP and WHVP most likely due to changes in sinusoidal perfusion.  相似文献   

4.
The adipokine resistin has been implicated in obesity and insulin resistance. Liver cirrhosis is associated with decreased body fat mass and insulin resistance. We determined plasma resistin levels in 57 patients with cirrhosis, 13 after liver transplantation, and 30 controls and correlated these with hemodynamic as well as hepatic and systemic metabolic parameters. Patients with cirrhosis had, dependent on the clinical stage, an overall 86% increase in resistin levels (P < 0.001) with hepatic venous resistin being higher than arterial levels (P < 0.001). Circulating resistin was significantly correlated with plasma TNF-alpha levels (r = 0.62, P < 0.001). No correlation was observed between resistin and hepatic hemodynamics, body fat mass, systemic energy metabolism, and the degree of insulin resistance. However, plasma resistin in cirrhosis was negatively associated with hepatic glucose production (r = -0.47, P < 0.01) and positively with circulating free fatty acids (FFA; r = 0.40, P < 0.01) and ketone bodies (r = 0.48, P < 0.001) as well as hepatic ketone body production (r = 0.40, P < 0.01). After liver transplantation, plasma resistin levels remained unchanged, whereas insulin resistance was significantly improved (P < 0.01). These data provide novel insights into the role of resistin in the pathophysiological background of a catabolic disease in humans and also indicate that resistin inhibition may not represent a suitable therapeutic strategy for the treatment of insulin resistance and diabetes in patients with liver cirrhosis.  相似文献   

5.
Cardiac output (CO) monitoring is essential for the optimal management of critically ill patients. Several mathematical methods have been proposed for CO estimation based on pressure waveform analysis. Most of them depend on invasive recording of blood pressure and require repeated calibrations, and they suffer from decreased accuracy under specific conditions. A new systolic volume balance (SVB) method, including a simpler empirical form (eSVB), was derived from basic physical principles that govern blood flow and, in particular, a volume balance approach for the conservation of mass ejected into and flowed out of the arterial system during systole. The formulas were validated by a one-dimensional model of the systemic arterial tree. Comparisons of CO estimates between the proposed and previous methods were performed in terms of agreement and accuracy using "real" CO values of the model as a reference. Five hundred and seven different hemodynamic cases were simulated by altering cardiac period, arterial compliance, and resistance. CO could be accurately estimated by the SVB method as follows: CO = C × PP(ao)/(T - P(sm) × T(s)/P(m)) and by the eSVB method as follows: CO = k × C × PP(ao)/T, where C is arterial compliance, PP(ao) is aortic pulse pressure, T is cardiac period, P(sm) is mean systolic pressure, T(s) is systolic duration, P(m) is mean pressure, and k is an empirical coefficient. SVB applied on aortic pressure waves did not require calibration or empirical correction for CO estimation. An empirical coefficient was necessary for brachial pressure wave analysis. The difference of SVB-derived CO from model CO (for brachial waves) was 0.042 ± 0.341 l/min, and the limits of agreement were -0.7 to 0.6 l/min, indicating high accuracy. The intraclass correlation coefficient and root mean square error between estimated and "real" CO were 0.861 and 0.041 l/min, respectively, indicating very good accuracy. eSVB also provided accurate estimation of CO. An in vivo validation study of the proposed methods remains to be conducted.  相似文献   

6.
In cirrhosis, arterial vasodilatation leads to central hypovolemia and activation of the sympathetic nervous and renin-angiotensin-aldosterone systems. As the liver disease and circulatory dysfunction may affect baroreflex sensitivity (BRS), we assessed BRS in a large group of patients with cirrhosis and in controls who were all supine and some after 60 degrees passive head-up and 30 degrees head-down tilting in relation to central hemodynamics and activity of the sympathetic nervous and renin-angiotensin-aldosterone systems. One-hundred and five patients (Child classes A/B/C: 21/55/29) and 25 (n=11 + 14) controls underwent a full hemodynamic investigation. BRS was assessed by cross-spectral analysis of variabilities between blood pressure and heart rate time series. The median BRS was significantly lower in the supine cirrhotic patients, 3.7 (range 0.3-30.7) ms/mmHg than in matched controls (n=11): 14.3 (6.1-23.6) ms/mmHg, P<0.001. A stepwise multiple-regression analysis revealed that serum sodium (P=0.044), heart rate (P=0.027), and central circulation time (P=0.034) independently correlated with BRS. Head-down tilting had no effects on BRS, but, after head-up tilting, BRS was similar in the patients (n=23) and controls (n=14). In conclusion, BRS is reduced in cirrhosis in the supine position and relates to various aspects of cardiovascular dysfunction, but no further reduction was observed in parallel with the amelioration of the hyperdynamic circulation after head-up tilting. The results indicate that liver dysfunction and compensatory mechanisms to vasodilatation may be involved in the low BRS, which may contribute to poor cardiovascular adaptation in cirrhosis.  相似文献   

7.
Patients with cirrhosis have hyperdynamic circulation with abnormally distributed blood volume and widespread arteriovenous communications. We aimed to detect possible very early (i.e., before 4 s) and early (i.e., after 4 s) central circulatory transits and their potential influence on determination of central and arterial blood volume (CBV). Thirty-six cirrhotic patients and nineteen controls without liver disease undergoing hemodynamic catheterization were given central bolus injections of albumin with different labels. Exponential and gamma variate fits were applied to the indicator dilution curves, and the relations between flow, circulation times, and volumes were established according to kinetic principles. No significant very early central circulatory transits were identified. In contrast, early (i.e., 4 s to maximal) transits corresponding to a mean of 5.1% (vs. 0.8% in controls; P < 0.005) of cardiac output (equivalent to 0.36 vs. 0.05 l/min; P < 0.01) were found in cirrhotic patients. These early transits averaged 7.7 vs. 12.7 and 17.2 s of ordinary central transits of cirrhotic patients and controls, respectively (P < 0.001). Early transits were directly correlated to the alveolar-arterial oxygen difference in the cirrhotic patients (r = 0.46, P < 0.01) but not in controls (r = 0.04; not significant). There was good agreement between the CBV determined by the conventional indicator dilution method and that determined by separation of early and ordinary transits by the gamma variate fit method (1.51 vs. 1.53 liter; not significant). In conclusion, no very early central circulatory transits were identified in cirrhotic patients. A significant part of the cardiac output undergoes an early transit, probably through pulmonary shunts or areas with low ventilation-perfusion ratios in cirrhotic patients. Composite determination of CBV by the gamma variate fit method is in close agreement with established kinetic methods. The study provides further evidence of abnormal central circulation in cirrhosis.  相似文献   

8.
Arterial compliance is determined by structural factors, such as collagen and elastin, and functional factors, such as vasoactive neurohormones. To determine whether angiotensin II contributes to decreased arterial compliance in patients with heart failure, this study tested the hypothesis that administration of an angiotensin-converting enzyme inhibitor improves arterial compliance. Arterial compliance and stiffness were determined by measuring carotid artery diameter, using high-resolution duplex ultrasonography, and blood pressure in 23 patients with heart failure secondary to idiopathic dilated cardiomyopathy. Measurements were made before and after intravenous administration of enalaprilat (1 mg) or vehicle. Arterial compliance was inversely related to both baseline plasma angiotensin II (r = -0.52; P = 0.015) and angiotensin-converting enzyme concentrations (r = -0.45; P = 0.041). During isobaric conditions, enalaprilat increased carotid artery compliance from 3.0 +/- 0.4 to 5.0 +/- 0.4 x 10(-10) N(-1). m(4) (P = 0.001) and decreased the carotid artery stiffness index from 17.5 +/- 1.8 to 10.1 +/- 0.6 units (P = 0.001), whereas the vehicle had no effect. Thus angiotensin II is associated with reduced carotid arterial compliance in patients with congestive heart failure, and angiotensin-converting enzyme inhibition improves arterial elastic properties. This favorable effect on the pulsatile component of afterload may contribute to the improvement in left ventricular performance that occurs in patients with heart failure treated with angiotensin-converting enzyme inhibitors.  相似文献   

9.
Right ventricular (RV) afterload is commonly defined as pulmonary vascular resistance, but this does not reflect the afterload to pulsatile flow. The purpose of this study was to quantify RV afterload more completely in patients with and without pulmonary hypertension (PH) using a three-element windkessel model. The model consists of peripheral resistance (R), pulmonary arterial compliance (C), and characteristic impedance (Z). Using pulmonary artery pressure from right-heart catheterization and pulmonary artery flow from MRI velocity quantification, we estimated the windkessel parameters in patients with chronic thromboembolic PH (CTEPH; n = 10) and idiopathic pulmonary arterial hypertension (IPAH; n = 9). Patients suspected of PH but in whom PH was not found served as controls (NONPH; n = 10). R and Z were significantly lower and C significantly higher in the NONPH group than in both the CTEPH and IPAH groups (P < 0.001). R and Z were significantly lower in the CTEPH group than in the IPAH group (P < 0.05). The parameters R and C of all patients obeyed the relationship C = 0.75/R (R(2) = 0.77), equivalent to a similar RC time in all patients. Mean pulmonary artery pressure P and C fitted well to C = 69.7/P (i.e., similar pressure dependence in all patients). Our results show that differences in RV afterload among groups with different forms of PH can be quantified with a windkessel model. Furthermore, the data suggest that the RC time and the elastic properties of the large pulmonary arteries remain unchanged in PH.  相似文献   

10.
Cardiac output measurement from arterial pressure waveforms presumes a defined relationship between the arterial pulse pressure (PP), vascular compliance (C), and resistance (R). Cardiac output estimates degrade if these assumptions are incorrect. We hypothesized that sepsis would differentially alter central and peripheral vasomotor tone, decoupling the usual pressure wave propagation from central to peripheral sites. We assessed arterial input impedance (Z), C, and R from central and peripheral arterial pressures, and aortic blood flow in an anesthetized porcine model (n = 19) of fluid resuscitated endotoxic shock induced by endotoxin infusion (7 μg·kg?1·h?1 increased to 14 and 20 μg·kg?1·h?1 every 10 min and stopped when mean arterial pressure <40 mmHg or Sv(O?) < 45%). Aortic, femoral, and radial artery pressures and aortic and radial artery flows were measured. Z was calculated by FFT of flow and pressure data. R and C were derived using a two-element Windkessel model. Arterial PP increased from aortic to femoral and radial sites. During stable endotoxemia with fluid resuscitation, aortic and radial blood flows returned to or exceeded baseline while mean arterial pressure remained similarly decreased at all three sites. However, aortic PP exceeded both femoral and radial arterial PP. Although Z, R, and C derived from aortic and radial pressure and aortic flow were similar during baseline, Z increases and C decreases when derived from aortic pressure whereas Z decreases and C increases when derived from radial pressure, while R decreased similarly with both pressure signals. This central-to-peripheral vascular tone decoupling, as quantified by the difference in calculated Z and C from aortic and radial artery pressure, may explain the decreasing precision of peripheral arterial pressure profile algorithms in assessing cardiac output in septic shock patients and suggests that different algorithms taking this vascular decoupling into account may be necessary to improve their precision in this patient population.  相似文献   

11.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

12.
Large elastic artery compliance is reduced and arterial blood pressure (BP) is increased in the central (cardiothoracic) circulation with aging. Reactive oxygen species may tonically modulate central arterial compliance and BP in humans, and oxidative stress may contribute to adverse changes with aging. If so, antioxidant administration may have beneficial effects. Young (Y; 26 +/- 1 yr, mean +/- SE) and older (O; 63 +/- 2 yr, mean +/- SE) healthy men were studied at baseline and during acute (intravenous infusion; Y: n = 13, O: n = 12) and chronic (500 mg/day for 30 days; Y: n = 10, O: n = 10) administration of ascorbic acid (vitamin C). At baseline, peripheral (brachial artery) BP did not differ in the two groups, but carotid artery compliance was 43% lower (1.2 +/- 0.1 vs. 2.1 +/- 0.1 mm(2)/mmHg x 10(-1), P < 0.01) and central (carotid) BP (systolic: 116 +/- 5 vs. 101 +/- 3 mmHg, P < 0.05, and pulse pressure: 43 +/- 4 vs. 36 +/- 3 mmHg, P = 0.16), carotid augmentation index (AIx; 27.8 +/- 7.8 vs. -20.0 +/- 6.6%, P < 0.001), and aortic pulse wave velocity (PWV; 950 +/- 88 vs. 640 +/- 38 cm/s, P < 0.01) were higher in the older men. Plasma ascorbic acid concentrations did not differ at baseline (Y: 71 +/- 5 vs. O: 61 +/- 7 micromol/l, P = 0.23), increased (P < 0.001) to supraphysiological levels during infusion (Y: 1240 +/- 57 and O: 1,056 +/- 83 micromol/l), and were slightly elevated (P < 0.001 vs. baseline) with supplementation (Y: 96 +/- 5 micromol/l vs. O: 85 +/- 6). Neither ascorbic acid infusion nor supplementation affected peripheral BP, heart rate, carotid artery compliance, central BP, carotid AIx, or aortic PWV (all P > 0.26). These results indicate that the adverse changes in large elastic artery compliance and central BP with aging in healthy men are not 1). mediated by ascorbic acid-sensitive oxidative stress (infusion experiments) and 2). affected by short-term, moderate daily ascorbic acid (vitamin C) supplementation.  相似文献   

13.
We investigated the effects of 1) acute hypoxia and 2) 5 wk of chronic intermittent hypoxia (IH) on the systemic and pulmonary circulations of C57BL/6J mice. Mice were chronically instrumented with either femoral artery or right ventricular catheters. In response to acute hypoxia (4 min of 10% O2; n = 6), systemic arterial blood pressure fell (P < 0.005) from 107.7 +/- 2.5 to 84.7 +/- 6.5 mmHg, whereas right ventricular pressure increased (P < 0.005) from 11.7 +/- 0.8 to 14.9 +/- 1.3 mmHg. Another cohort of mice was then exposed to IH for 5 wk (O2 nadir = 5%, 60-s cycles, 12 h/day) and then implanted with catheters. In response to 5 wk of chronic IH, mice (n = 8) increased systemic blood pressure by 7.5 mmHg, left ventricle + septum weight by 32.2 +/- 7.5 x 10(-2) g/100 g body wt (P < 0.015), and right ventricle weight by 19.3 +/- 3.2 x 10(-2) g/100 g body wt (P < 0.001), resulting in a 14% increase in the right ventricle/left ventricle + septum weight (P < 0.005). We conclude that in C57BL/6J mice 1) acute hypoxia causes opposite effects on the pulmonary and systemic circulations, leading to preferential loading of the right heart; and 2) chronic IH in mice results in mild to moderate systemic and pulmonary hypertension, with resultant left- and right-sided ventricular hypertrophy.  相似文献   

14.
Increased levels of intestinal VEGF are thought to worsen portal hypertension. The cause of the increase in the level of intestinal VEGF found during cirrhosis is not known. The aim of this study is to demonstrate a relationship between portal pressure (PP) and intestinal/ plasma VEGF levels in different stages of fibrosis/cirrhosis. In this experiment, rats were exposed to carbon tetrachloride (CCl(4) ) for 6, 8 and 12 weeks. At the end of exposure, the three groups of rats exhibited three different stages of pathology: non-cirrhotic, early fibrotic and cirrhotic, respectively. For those rats and their age-matched controls, PP and intestinal/plasma VEGF levels were measured. Rats inhaling CCl(4) for 12 weeks developed portal hypertension (18.02 ± 1.07 mmHg), while those exposed for 6 weeks (7.26 ± 0.58 mmHg) and for 8 weeks (8.55 ± 0.53 mmHg) did not. The rats exposed for 12 weeks also showed a 40% increase in the level of intestinal VEGF compared to the controls (P < 0.05), while those rats exposed to CCl(4) inhalation for 6 and 8 weeks did not. There was a significant positive correlation between PP and intestinal VEGF levels (r(2) = 0.4, P < 0.005). Plasma VEGF levels were significantly elevated in those rats exposed to 12 weeks of CCl(4) inhalation (63.7 pg/ml, P < 0.01), compared to the controls (8.5 pg/ml). However, no correlation was observed between PP and plasma VEGF levels. It is concluded that portal pressure modulates intestinal VEGF levels during the development of cirrhosis.  相似文献   

15.
Estimation of total systemic arterial compliance in humans   总被引:1,自引:0,他引:1  
Systemic arterial compliance, a major component of aortic input impedance, was determined in 10 patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy and 11 age-matched control subjects found free of detectable cardiovascular disease. Total arterial compliance was determined from high-fidelity ascending aortic pressure and velocity recordings using 1) the traditional monoexponential aortic diastolic pressure decay and 2) the direct solution of the equation, which describes the three-element windkessel model of the arterial system. Resting values for total arterial compliance (x10(-3) cm5/dyn) derived from method 1 were significantly correlated with compliance derived from method 2 (r = 0.89, P less than 0.01). However, method 1 values (control mean 1.15 +/- 0.27, heart failure mean 1.18 +/- 0.54) were consistently and significantly lower (P less than 0.001) than method 2 values (control mean 1.59 +/- 0.50, heart failure mean 1.38 +/- 0.60). Resting total arterial compliance in heart-failure patients was not significantly different from control subjects. Total arterial compliance did not significantly change with exercise in either group despite increases in arterial pressure. However, nitroprusside administration in the heart-failure group increased total arterial compliance both at rest and on exercise compared with the unmedicated state. These different methodological approaches to the estimation of total arterial compliance in humans resulted in significantly different absolute values for compliance, although both methods provided concordant results with respect to the response of arterial compliance to physiological and pharmacological interventions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.

Background

Advanced liver cirrhosis is associated with systemic hemodynamic derangement leading to the development of severe complications associated with increased mortality. Copeptin is a stable cleavage product of the precursor of arginine vasopressin, a key-regulator in hemodynamic homeostasis. Copeptin is currently considered a reliable prognostic marker in a wide variety of diseases other than cirrhosis. The present study aimed to assess copeptin, both experimentally and clinically, as a potential biomarker of hemodynamic derangement and to evaluate its prognostic significance in cirrhosis.

Materials and Methods

Two studies were executed: 1) in 18 thioacetamide-induced cirrhotic rats and 5 control rats, plasma copeptin and hemodynamic measurements were performed, 2) in 61 cirrhotic patients, serum copeptin concentration was measured in samples collected at time of registration at the waiting list for liver transplantation. In 46 patients, also a second copeptin measurement was performed during follow-up while registered at the waiting list for liver transplantation. To determine the association of serum copeptin and clinical data with outcome, Cox proportional hazard regression analysis and Kaplan Meier analysis were performed.

Results

Plasma copeptin concentration was significantly higher in cirrhotic rats than in controls (1.6 ± 0.5 vs. 0.9 ± 0.1 pmol/L, p< 0.01) and was negatively correlated to the mean arterial blood pressure (r = -0.574, p = 0.013). In cirrhotic patients, serum copeptin concentration was high [11.0 (5.2–24.0) pmol/L] and increased significantly during the time of registration at the waiting list for liver transplantation. MELD and MELD-sodium score were significantly correlated to serum copeptin [MELD: (r = 0.33, p = 0.01), MELD-sodium: (r = 0.29, p = 0.02)], also at time of the second copeptin measurement [MELD and MELD-sodium: r = 0.39, p< 0.01]. In cirrhotic humans, serum copeptin concentration was significantly associated with outcome, independently of the MELD and MELD-sodium score. Patients with a low serum copeptin concentration at time of registration at the liver transplant waiting list had significantly better transplant-free survival rates at 3, 6 and 12 months of follow-up as compared to those with a high serum copeptin concentration (Log-rank: p< 0.01, p< 0.01 and p = 0.02 respectively).

Conclusions

Circulating copeptin levels are elevated in rats and humans with cirrhosis. Copeptin is independently associated with outcome in cirrhotic patients awaiting liver transplantation.  相似文献   

17.
Low doses of sorafenib have been shown to decrease portal pressure (PP), portal-systemic shunts, and liver fibrosis in cirrhotic rats. Nonselective beta blockers (NSBB) are the only drugs recommended for the treatment of portal hypertension. The aim of our study was to explore whether the combination of propranolol and sorafenib might show an additive effect reducing PP in cirrhotic rats. Groups of common bile duct-ligated cirrhotic rats (CBDL) and sham-operated control rats were treated by gavage with vehicle, propranolol (30 mg·kg(-1)·day(-1)), sorafenib (1 mg·kg(-1)·day(-1)), or propranolol+sorafenib. Treatment began 2 wk after the CBDL or sham operation. Hemodynamic evaluation was performed after 2 wk of treatment. In cirrhotic rats, propranolol and sorafenib produced a significant (P < 0.001) and similar reduction in PP (-19 and -15%, respectively). This was achieved through different mechanisms: whereas propranolol decreased PP by reducing portal blood flow (-35%; P = 0.03), sorafenib decreased PP without decreasing portal flow indicating decreased hepatic resistance. After propranolol+sorafenib, the fall in PP was significantly greater (-30%; P < 0.001) than with either drug alone, demonstrating an additive effect. However, the reduction in portal flow (-39%) under combined therapy was not significantly greater than after propranolol alone. Sorafenib, alone or in combination with propranolol, produced significant reduction in portal-systemic shunting (-25 and -33%, respectively), splanchnic vascularization (-37 and -41%, respectively), liver fibrosis (38%), and hepatic neovascularization (-42 and -51%, respectively). These effects were not observed after propranolol alone. In conclusion, the combination of propranolol+sorafenib causes a greater reduction in PP than either drug alone and decreases markedly the extent of portal-systemic shunting, splanchnic and hepatic neovascularization, and liver fibrosis, suggesting that this drug combination is a potentially useful strategy in the treatment of portal hypertension.  相似文献   

18.
Factors associated with the menstrual cycle, such as the endogenous hormones estrogen and progesterone, have dramatic effects on cardiovascular regulation. It is unknown how this affects postexercise hemodynamics. Therefore, we examined the effects of the menstrual cycle and sex on postexercise hemodynamics. We studied 14 normally menstruating women [24.0 (4.2) yr; SD] and 14 men [22.5 (3.5) yr] before and through 90 min after cycling at 60% .VO2(peak) for 60 min. Women were studied during their early follicular, ovulatory, and mid-luteal phases; men were studied once. In men and women during all phases studied, mean arterial pressure was decreased after exercise throughout 60 min (P < 0.001) postexercise and returned to preexercise values at 90 min (P = 0.089) postexercise. Systemic vascular conductance was increased following exercise in both sexes throughout 60 min (P = 0.005) postexercise and tended to be elevated at 90 min postexercise (P = 0.052), and femoral vascular conductance was increased following exercise throughout 90 min (P < 0.001) postexercise. Menstrual phase and sex had no effect on the percent reduction in arterial pressure (P = 0.360), the percent rise in systemic vascular conductance (P = 0.573), and the percent rise in femoral vascular conductance (P = 0.828) from before to after exercise, nor did the pattern of these responses differ across recovery with phase or sex. This suggests that postexercise hemodynamics are largely unaffected by sex or factors associated with the menstrual cycle.  相似文献   

19.
There is evidence that nitric oxide (NO) is involved in the chronotropic, the inotropic, and the vasodilator response to beta-adrenoceptor agonists. In the present study we hypothesized that inhibition of NO synthase may modulate the systemic vascular and cardiac effects of isoprenaline, a beta-adrenoceptor agonist, in healthy subjects. Subjects received stepwise increasing doses of isoprenaline (0.1-0.8 microg/min) in the absence or presence of systemic NO-synthase inhibition using two intravenous doses of N-monomethyl-L-arginine (L-NMMA; dosage 1, 3.0 mg/kg over 5 min, followed by 30 microg/kg/min over 75 min; dosage 2, 6.0 mg/kg over 5 min, followed by 60 microg/kg/min over 75 min) or peripheral vasoconstriction using exogenous endothelin-1 (ET-1; 5.0 ng/kg/min for 80 min). The chronotropic (RR interval) and the inotropic (QS2c) responses were assessed by noninvasive measurement of systolic time intervals. L-NMMA alone did not influence QS2c, but did increase the RR interval (P < 0.001) and the mean arterial blood pressure (P = 0.003). L-NMMA did not attenuate the blood pressure and the QS2c responses to isoprenaline, but significantly and dose-dependently blunted the heart rate response to beta-adrenoceptor stimulation (P = 0.029). ET-1 decreased the RR interval (P < 0.001) and increased the mean arterial blood pressure (P = 0.028). Our results indicate that beta-adrenoceptor mediated effects on the heart rate are much more susceptible to NOS inhibition than inotropic responses. This indicates that NO has an important role in heart rate control during beta-adrenoceptor stimulation.  相似文献   

20.

Background and Aims

CXCL1 (CXC chemokine-ligand-1) is a ligand for CXC chemokine receptor 2 expressed on hepatic stellate cells (HSC). Thus, CXCL1 might contribute to HSC activation and fibrogenesis. In the present study, we investigated the influence of the CXCL1 rs4074 polymorphism on the occurrence of alcohol induced liver cirrhosis and hepatocellular carcinoma (HCC).

Methods

The study involved 458 patients with alcoholic cirrhosis (170 with HCC), 115 alcoholics without liver disease and 342 healthy controls. All subjects were genotyped for the CXCL1 rs4074 polymorphism and CXCL1 serum levels of 132 patients were measured. In vitro CXCL1 secretion in TLR-transfected cell lines were studied by ELISA.

Results

Distribution of the CXCL1 genotypes (GG/GA/AA) was 159/219/80 in patients with alcoholic cirrhosis, 52/44/19 in alcoholic controls and 158/140/44 in healthy controls. Patients with alcohol-induced cirrhosis were significantly more often carriers of the CXCL1 rs4074 A allele (65.3%) than alcoholics without liver disease (54.8%, OR=1.55; 95%CI=1.025-2.350; p=0.04) and healthy controls (53.8%, OR=1.62; 95%CI=1.212-2.151; p=0.001). Accordingly, the frequency of the CXCL1 rs4074 A allele was significantly higher in the cirrhotic patients than in the subjects without cirrhosis (41.4% vs. 33.9%, OR=1.38, 95% CI:1.14–1.66, p=0.001). Furthermore cirrhotic carriers of the CXCL1 rs4074 A allele had significantly higher CXCL1 serum levels than carriers of the GG genotype. In contrast to sera from healthy controls, sera from patients with alcoholic cirrhosis induced CXCL1 secretion in TLR2- (p=0.016) and TLR4- (p=0.008) transfected HEK293 cells. This finding indicates that sera from patients with alcoholic cirrhosis contain soluble ligands that can induce CXCL1 production via stimulation of TLRs.

Conclusion

The enhanced CXCL1 serum levels in carriers of the rs4074 A allele together with their increased frequency in patients with alcohol induced cirrhosis suggest the CXCL1 rs4074 A allele as a genetic risk factor for alcoholic cirrhosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号