首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitotic catastrophe is a poorly defined type of cell death linked to the abnormal activation of cyclin B/Cdk1. Here we propose that a conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe, provided that cell cycle checkpoints are inhibited, in particular the DNA structure checkpoints and the spindle assembly checkpoint. Two subtypes of mitotic catastrophe can be distinguished. First, mitotic catastrophe can kill the cell during or close to the metaphase, in a p53-independent fashion, as this occurs in Chk2-inhibited heterokarya generated by fusion. Second, mitotic catastrophe can occur after failed mitosis, during the activation of the polyploidy checkpoint, in a partially p53-dependent fashion. In these conditions, cells die as a result of caspase activation and mitochondrial membrane permeabilization that constitute hallmarks of apoptosis. Prevention of caspase activation and/or mitochondrial damage avoids mitotic catastrophe, indicating that this form of cell death indeed constitutes a special case of apoptosis. Importantly, the suppression of mitotic catastrophe can favor asymmetric division and the generation of aneuploid cells. This delineates a molecular pathway through which failure to arrest the cell cycle and inhibition of apoptosis can favor the occurrence of cytogenetic abnormalities which are likely to participate in oncogenesis.  相似文献   

2.
The p53 tumor suppressor responds to chemotherapeutic stress by triggering apoptosis or eliciting pro-survival pathway through arresting cell cycle progression for DNA damage repair. Here we examined the pro-survival activity of p53 on the adriamycin-induced stress using H1299 cells stably expressing tsp53 V143A, a temperature-sensitive mutant activating only the subset of p53 target genes related to growth arrest and DNA repair, but not apoptosis. At 38 degrees C, cells evaded from adriamycin-induced G2 arrest and died of apoptosis and mitotic catastrophe, which could be inhibited by Cdk inhibitors. Activation of functional tsp53 V143A at 32 degrees C led to suppression of Cdk1/2 activities and Cyclin B1/Cdk1 expression, cells exhibited prolonged G2 arrest, regained reproductive potential and were protected from mitotic catastrophe induced by adriamycin. Inhibition of mitotic catastrophe and Cyclin B1/Cdk1 expression was ablated upon silencing p21 Waf1 expression in tsp53 V143A-H1299 cells or in HCT116 cells. Together we show that p21 Waf1 is a key component of G2 checkpoint necessary and sufficient for protecting tumor cells against adriamycin-induced mitotic catastrophe.  相似文献   

3.
To evaluate the stability of cells arrested in metaphase, cell viability, RNA content, and chromatin structure (the latter probed by the DNA in situ sensitivity to acid-induced denaturation) were studied in uniform-age mitotic CHO cell populations maintained either at 37 degrees C (in the presence of Colcemid) or at 0-4 degrees C for up to 6 h. No significant changes in cell viability and RNA content were seen throughout the experiment for both groups of cells. The sensitivity of DNA in situ to denaturation was significantly increased during the initial 40 min of cell arrest in mitosis. However, no further chromatin changes for up to 6 h were evident regardless of whether cells were kept at 37 degrees C with Colcemid or at 0-4 degrees C in its absence. The data indicate that neither significant deterioration of metaphase cells nor progressive chromatin changes are expected during stathmokinesis experiments in vitro or during the metaphase cell arrest in cytogenetic studies lasting up to 6 h. Also, no RNA turnover can be detected in mitotic cells during this time interval.  相似文献   

4.
Activation of p53 by cellular stress may lead to either cell cycle arrest or apoptotic cell death. Restrictions in a cell's ability to halt the cell cycle might, in turn, cause mitotic catastrophe, a delayed type of cell death with distinct morphological features. Here, we have investigated the contribution of p53 and caspase-2 to apoptotic cell death and mitotic catastrophe in cisplatin-treated ovarian carcinoma cell lines. We report that both functional p53 and caspase-2 were required for the apoptotic response, which was preceded by translocation of nuclear caspase-2 to the cytoplasm. In the absence of functional p53, cisplatin treatment resulted in caspase-2-independent mitotic catastrophe followed by necrosis. In these cells, apoptotic functions could be restored by transient expression of wt p53. Hence, p53 appeared to act as a switch between apoptosis and mitotic catastrophe followed by necrosis-like lysis in this experimental model. Further, we show that inhibition of Chk2, and/or 14-3-3sigma deficiency, sensitized cells to undergo mitotic catastrophe upon treatment with DNA-damaging agents. However, apoptotic cell death seemed to be the final outcome of this process. Thus, we hypothesize that the final mode of cell death triggered by DNA damage in ovarian carcinoma cells is determined by the profile of proteins involved in the regulation of the cell cycle, such as p53- and Chk2-related proteins.  相似文献   

5.
Enzastaurin is a selective inhibitor of protein kinase C β and a potent inhibitor of tumor angiogenesis. In addition, enzastaurin shows direct cytotoxic activity toward a subset of tumor cells including colorectal cancer cells (CRC). In spite of promising results in animal models, the clinical activity of enzastaurin in CRC patients has been disappointing although a subset of patients seems to derive benefit. In the present study we investigated the biological and cytotoxic activities of enzastaurin toward a panel of well-characterized CRC cell lines in order to clarify the mechanistic basis for the cytotoxic activity. Our results show that enzastaurin is significantly more cytotoxic toward CRC cells with chromosome instability (CIN) compared to cells with microsatellite instability (MSI). Since CIN is usually attributed to mitotic dysfunction, the influence of enzastaurin on cell cycle progression and mitotic transit was characterized for representative CIN and MSI cell lines. Enzastaurin exposure was accompanied by prolonged metaphase arrest in CIN cells followed by the appearance of tetraploid and micronuclei-containing cells as well as by increased apoptosis, whereas no detectable mitotic dysfunctions were observed in MSI cells exposed to isotoxic doses of enzastaurin. Our study identifies enzastaurin as a new, context dependent member of a heterogeneous group of anticancer compounds that induce “mitotic catastrophe," that is mitotic dysfunction accompanied by cell death. These data provide novel insight into the mechanism of action of enzastaurin and may allow the identification of biomarkers useful to identify CRC patients particularly likely, or not, to benefit from treatment with enzastaurin.  相似文献   

6.
Kodym, E., Kodym, R., Choy, H. and Saha, D. Sustained Metaphase Arrest in Response to Ionizing Radiation in a Non-small Cell Lung Cancer Cell Line. Radiat. Res. 169, 46-58 (2008). In solid tumors, non-apoptotic forms of tumor cell inactivation such as mitotic catastrophe appear to be predominant in the response to DNA-damaging agents. Despite its importance, the underlying molecular mechanisms of mitotic catastrophe have been only partially elucidated. We found that a large fraction of HCC2279 non-small cell lung cancer cells underwent mitotic catastrophe after irradiation. Cells were arrested in metaphase with chromosomal damage indicated by DNA fragments displaced from the metaphase plate and considerable numbers of residual gamma-H2AX foci. Although TP53 was nonfunctional, we detected a prompt radiation response on the level of checkpoint kinases. In contrast, CDC25A was the only checkpoint phosphatase that was responsive to radiation. CDC25B was not detectable, and CDC25C was constitutively phosphorylated at serine 216, leading to its cytoplasmic sequestration and functional inactivation. Therefore, radiation-induced mitotic catastrophe in HCC2279 cells appears to be induced by a combination of relative insufficiencies in the p53-mediated and checkpoint kinase-mediated pathways leading to premature entry into mitosis. Displaced chromosome fragments triggering an intra-M checkpoint in cells entering mitosis presumably result in a sustained metaphase arrest. The phenomenon found in these cells, which were derived directly from a human patient, might be responsible for therapy-induced genetic instability of tumors.  相似文献   

7.
Fragkos M  Beard P 《PloS one》2011,6(8):e22946
Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV) that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.  相似文献   

8.
DNA damage, cell cycle and apoptosis form a network with important implications for cancer chemotherapy. Dysfunctions of the cycle checkpoints can allow cancer cells to acquire drug resistance. Etoposide is a well-known inducer of apoptosis, which is widely used in cell biology and in clinical practice. In this work we report that a pulse of 50 μM etoposide (incubation for only 3 h) on HeLa cells causes a sequence of events that leads to abnormal mitotic figures that could be followed either by cell death or, more commonly, by interphase restitution and endocycle. The endocycling polyploid cells enter immediately into mitosis and suffer metaphase blockage with multiple spindle poles, which were generally followed by a direct triggering of apoptosis from metaphase (mitotic catastrophe), or by a new process of endocycling, until surviving cells finally became apoptotic (96 h after the treatment).  相似文献   

9.
Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.  相似文献   

10.
To understand the potential influence of spindle checkpoint function in response to arsenic trioxide (ATO)-induced apoptosis observed in cancer cell lines, we examined the correlation between activation of the spindle checkpoint and susceptibility to ATO-induced apoptosis in 10 cancer cell lines lacking functional p53. The ability to functionally activate the spindle checkpoint in each cancer cell line was assessed by the induction of mitotic arrest after Taxol treatment. Bromodeoxyuridine (BrdU) pulse-chase analysis of Taxol-treated cell lines with low mitotic arrest showed that they were not arrested at mitosis but divided abnormally, confirming that spindle checkpoint activation was impaired in these cell lines. Our results demonstrate that apoptosis was significantly induced by ATO in cancer cell lines with functional activation of the spindle checkpoint and substantial induction of mitotic arrest. Cell lines with negligible mitotic arrest exhibited little ATO-induced apoptosis. However, no such correlation was observed following treatment of cells with camptothecin, a topoisomerase I inhibitor. Furthermore, attenuation of the spindle checkpoint function by small interfering RNA-mediated silencing of BubR1 and Mad2 in cancer cells that were susceptible to ATO-induced mitotic arrest and apoptosis greatly reduced the induction of mitotic arrest and apoptosis by ATO and increased the formation of micronuclei or multinuclei in survived cells. The marked correlation between ATO-induced mitotic arrest and apoptosis indicates that the induction of apoptosis by ATO was highly dependent on the functional activation of the spindle checkpoint in cancer cells lacking normal p53 function.  相似文献   

11.
Fission yeast p56(chk1) kinase is known to be involved in the DNA damage checkpoint but not to be required for cell cycle arrest following exposure to the DNA replication inhibitor hydroxyurea (HU). For this reason, p56(chk1) is considered not to be necessary for the DNA replication checkpoint which acts through the inhibitory phosphorylation of p34(cdc2) kinase activity. In a search for Schizosaccharomyces pombe mutants that abolish the S phase cell cycle arrest of a thermosensitive DNA polymerase delta strain at 37 degrees C, we isolated two chk1 alleles. These alleles are proficient for the DNA damage checkpoint, but induce mitotic catastrophe in several S phase thermosensitive mutants. We show that the mitotic catastrophe correlates with a decreased level of tyrosine phosphorylation of p34(cdc2). In addition, we found that the deletion of chk1 and the chk1 alleles abolish the cell cycle arrest and induce mitotic catastrophe in cells exposed to HU, if the cells are grown at 37 degrees C. These findings suggest that chk1 is important for the maintenance of the DNA replication checkpoint in S phase thermosensitive mutants and that the p56(chk1) kinase must possess a novel function that prevents premature activation of p34(cdc2) kinase under conditions of impaired DNA replication at 37 degrees C.  相似文献   

12.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

13.
In Huh-7 hepatoma cells, low dose (LD) doxorubicin treatment induces cell death through mitotic catastrophe accompanying the formation of large cells with multiple micronuclei, whereas high dose (HD) doxorubicin induces apoptosis. In this study, we investigated the role of Cdc2 and Cdk2 kinase in the regulation of the two modes of cell death induced by doxorubicin. During HD doxorubicin-induced apoptosis, the histone H1-associated activities of Cdc2 and Cdk2 both progressively declined in parallel with reductions in cyclin A and cyclin B protein levels. In contrast, during LD doxorubicin-induced cell death through mitotic catastrophe, the Cdc2 and Cdk2 kinases were transiently activated 1 day post-treatment, with similar changes seen in the protein levels of cyclin A, cyclin B, and Cdc2. Treatment with roscovitine, a specific inhibitor of Cdc2 and Cdk2, significantly blocked LD doxorubicin-induced mitotic catastrophe and cell death, but did not affect HD doxorubicin-induced apoptosis in Huh-7, SNU-398, and SNU-449 hepatoma cell lines. Our results demonstrate that differential regulation of Cdc2 and Cdk2 activity by different doses of doxorubicin may contribute to the induction of two distinct modes of cell death in hepatoma cells, either apoptosis or cell death through mitotic catastrophe.  相似文献   

14.
Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.e., the same DNA content as irradiated cells arrested in G(2) at the end of generation 0. Radiation caused a transient division delay in generation 0 before the cells divided or underwent mitotic catastrophe. Compared with the division delay for wild-type cells that express CDKN1A and 14-3-3sigma, knocking out CDKN1A reduced the delay the most for cells irradiated in G(1) (from approximately 15 h to approximately 3- 5 h), while knocking out 14-3-3sigma reduced the delay the most for cells irradiated in late S and G(2) (from approximately 18 h to approximately 3-4 h). However, 27% of wild-type cells and 17% of 14-3-3sigma(-/-) cells were arrested at 96 h in generation 0 compared with less than 1% for CDKN1A(-/-) and double-knockout cells. Thus expression of CDKN1A is necessary for the prolonged delay or arrest in generation 0. Furthermore, CDKN1A plays a crucial role in generation 1, greatly inhibiting progression into subsequent generations of both diploid cells and polyploid cells produced by mitotic catastrophe. Thus, in CDKN1A-deficient cell lines, a series of mitotic catastrophe events occurred to produce highly polyploid progeny during generations 3 and 4. Most importantly, the polyploid progeny produced by mitotic catastrophe events did not die sooner than the progeny of dividing cells. Death was identified as loss of cell movement, i.e. metabolic activity. Thus mitotic catastrophe itself is not a direct mode of death. Instead, apoptosis during interphase of both uninucleated and polyploid cells was the primary mode of death observed in the four cell types. Knocking out either CDKN1A or 14-3-3sigma increased the amount of cell death at 96 h, from 52% to approximately 70%, with an even greater increase to 90% when both genes were knocked out. Thus, in addition to effects of CDKN1A and 14-3-3sigma expression on transient cell cycle delay, CDKN1A has both an anti-proliferative and anti-apoptosis function, while 14-3-3sigma has only an anti-apoptosis function. Finally, the large alterations in the amounts of cell death did not correlate overall with the small alterations in clonogenic survival (dose-modifying ratios of 1.05-1.13); however, knocking out CDKN1A resulted in a decrease in arrested cells and an increase in survival, while knocking out 14-3-3sigma resulted in an increase in apoptosis and a decrease in survival.  相似文献   

15.
We have studied the response of human transformed cells to mitotic spindle inhibition. Two paired cell lines, K562 and its parvovirus-resistant KS derivative clone, respectively nonexpressing and expressing p53, were continuously exposed to nocodazole. Apoptotic cells were observed in both lines, indicating that mitotic spindle impairment induced p53-independent apoptosis. After a transient mitotic delay, both cell lines exited mitosis, as revealed by flow-cytometric determination of MPM2 antigen and cyclin B1 expression, coupled to cytogenetic analysis of sister centromere separation. Both cell lines exited mitosis without chromatid segregation. K562 p53-deficient cells further resumed DNA synthesis, giving rise to cells with a DNA content above 4C, and reentered a polyploid cycle. In contrast, KS cells underwent a subsequent G1 arrest in the tetraploid state. Thus, G1 arrest in tetraploid cells requires p53 function in the rereplication checkpoint which prevents the G1/S transition following aberrant mitosis; in contrast, p53 expression is dispensable for triggering the apoptotic response in the absence of mitotic spindle.  相似文献   

16.
The relationship between microtubular dynamics, dismantling of pericentriolar components and induction of apoptosis was analysed after exposure of H460 non-small lung cancer cells to anti-mitotic drugs. The microtubule destabilising agent, combretastatin-A4 (CA-4) led to microtubular array disorganization, arrest in mitosis and abnormal metaphases, accompanied by the presence of numerous centrosome-independent “star-like” structures containing tubulin and aggregates of pericentrosomal matrix components like γ-tubulin, pericentrin and ninein, whereas the structural integrity of centrioles was not affected by treatment. On the contrary, in condition of prolonged exposure or high concentrations of CA-4 such aggregates never formed. Treatment with 7.5 nM CA-4, which produced a high frequency “star-like” aggregates, was accompanied by mitotic catastrophe commitment characterized by translocation of the proapoptotic Bim protein to mitochondria activation of caspases-3/9 and DNA fragmentation as a result of either prolonged metaphase arrest or attempt of cells to divide. Drug concentrations which fail to block cells at mitosis were also unable to activate apotosis. A detailed time-course analysis of cell cycle arrest and apoptosis indicated that after CA-4 washout the number of metaphases with “star-like” structures decreased as a function of time and arrested cells proceeded in anaphase. After 4 h, the multiple α- and γ-tubulin aggregates coalesced into two well-defined spindles in a bipolar mitotic spindle organization. Overall, our findings suggest that the maintenance of microtubular integrity plays a relevant role in stabilising the pericentriolar matrix, whose dismantling can be associated with apoptosis after exposure to microtubule depolymerising agents.  相似文献   

17.
DNA damaging agents, including those used in the clinic, activate cell cycle checkpoints, which blocks entry into mitosis. Given that checkpoint override results in cell death via mitotic catastrophe, inhibitors of the DNA damage checkpoint are actively being pursued as chemosensitization agents. Here we explored the effects of gemcitabine in combination with Chk1 inhibitors in a panel of pancreatic cancer cell lines and found variable abilities to override the S phase checkpoint. In cells that were able to enter mitosis, the chromatin was extensively fragmented, as assessed by metaphase spreads and Comet assay. Notably, electron microscopy and high-resolution light microscopy showed that the kinetochores and centromeres appeared to be detached from the chromatin mass, in a manner reminiscent of mitosis with unreplicated genomes (MUGs). Cell lines that were unable to override the S phase checkpoint were able to override a G2 arrest induced by the alkylator MMS or the topoisomerase II inhibitors doxorubicin or etoposide. Interestingly, checkpoint override from the topoisomerase II inhibitors generated fragmented kinetochores (MUGs) due to unreplicated centromeres. Our studies show that kinetochore and centromere fragmentation is a defining feature of checkpoint override and suggests that loss of cell viability is due in part to acentric genomes. Furthermore, given the greater efficacy of forcing cells into premature mitosis from topoisomerase II-mediated arrest as compared with gemcitabine-mediated arrest, topoisomerase II inhibitors maybe more suitable when used in combination with checkpoint inhibitors.  相似文献   

18.
Arsenic trioxide (As(2)O(3)) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. However, evidence has accumulated that As(2)O(3) induces apoptosis regardless of PML-RARalpha status. Here we show that, at clinically relevant concentrations, As(2)O(3) causes S and G(2)M phase arrest of both PML-RARalpha-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G(2)M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G(2)M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.  相似文献   

19.
Arsenic trioxide (As2O3) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-a (PML-RARa) fusion protein. However, evidence has accumulated that As2O3 induces apoptosis regardless of PML-RARa status. Here we show that, at clinically relevant concentrations, As2O3 causes S and G2M phase arrest of both PML-RARa-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G2M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G2M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.

Key Words:

PML nuclear bodies (NB), Phosphorylated histone H3  相似文献   

20.
Madison DL  Stauffer D  Lundblad JR 《DNA Repair》2011,10(10):1003-1013
Poly(ADP)-ribose polymerase (PARP) inhibitors modify the enzymatic activity of PARP1/2. When certain PARP inhibitors are used either alone or in combination with DNA damage agents they may cause a G2/M mitotic arrest and/or apoptosis in a susceptible genetic context. PARP1 interacts with the cell cycle checkpoint proteins Ataxia Telangectasia Mutated (ATM) and ATM and Rad3-related (ATR) and therefore may influence growth arrest cascades. The PARP inhibitor PJ34 causes a mitotic arrest by an unknown mechanism in certain cell lines, therefore we asked whether PJ34 conditionally activated the checkpoint pathways and which downstream targets were necessary for mitotic arrest. We found that PJ34 produced a concentration dependent G2/M mitotic arrest and differentially affected cell survival in cells with diverse genetic backgrounds. p53 was activated and phosphorylated at Serine15 followed by p21 gene activation through both p53-dependent and -independent pathways. The mitotic arrest was caffeine sensitive and UCN01 insensitive and did not absolutely require p53, ATM or Chk1, while p21 was necessary for maintaining the growth arrest. Significantly, by using stable knockdown cell lines, we found that neither PARP1 nor PARP2 was required for any of these effects produced by PJ34. These results raise questions and cautions for evaluating PARP inhibitor effectiveness, suggesting whether effects should be considered not only on PARP's diverse ADP-ribosylation independent protein interactions but also on homologous proteins that may be producing either overlapping or distinct effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号