共查询到20条相似文献,搜索用时 0 毫秒
1.
J L Salisbury W L Lingle R A White L E Cordes S Barrett 《The journal of histochemistry and cytochemistry》1999,47(10):1265-1274
We used a novel adaptation of methods for microtubule polymerization in vitro to assess the MTOC activity of centrosomes in frozen-sectioned tissues. Remarkably, centrosomes of tissue sections retain the ability to nucleate microtubules even after several years of storage as frozen tissue blocks. Adaptations of these methods allow accurate counts of microtubules from individual cells and the quantitative estimation the MTOC activity of the intact tissue. These methods can be utilized to characterize MTOC activity in normal and diseased tissues and in particular tissues at different stages of development. (J Histochem Cytochem 47:1265-1273, 1999) 相似文献
2.
Purified extracts from short-time-predegenerated rats' sciatic nerves promote the regrowth of injured hippocampal neurites. 总被引:1,自引:0,他引:1
J Lewin-Kowalik D Górka M Larysz-Brysz B Go?ka E Swiech-Sabuda E Ma?ecka-Tendera M Krause 《Acta physiologica Hungarica》1997,85(4):325-334
Our previous studies revealed that purified extracts (submicrosomal fractions) obtained from peripheral nerves predegenerated for 7-, 28-, and 35-days facilitated neurite outgrowth from the injured hippocampus. It is recently known that totally transected peripheral nerve exhibits biphasic neurite-promoting activity. The early phase lasts 7 days. The aim of the present study was to find whether extracts obtained from short-time predegenerated (1-6 days) peripheral nerves exert any neurotrophic effect and when this influence is maximal. Experiments were carried out on adult male Wistar rats. Sciatic nerves were totally transected and following 1, 2, 3, 4, 5 and 6 days their distal stumps were homogenized and centrifuged. Extracts were implanted into the hippocampus by means of autologous connective tissue chambers. Reference groups were treated with extracts from non-predegenerated nerves, NGF solution or fibrin (groups C, NGF and B + F, respectively). In all groups FITC-HRP was injected into the extracranial end of chamber six weeks following surgery. Histochemic technique showed AChE-positive fibres inside the chambers of all examined groups. Fluorescence microscopic examination revealed the labeled cells in all examined groups, however their number was different in each group. They were most numerous at the fourth day of predegeneration. 相似文献
3.
Lewin-Kowalik J Górka D Larysz-Brysz M Goka B Swiech-Sabuda E Małecka-Tendera E Krause M 《Acta physiologica Hungarica》1997,85(3):259-268
Our previous studies revealed that predegenerated peripheral nerve grafts facilitated neurite outgrowth from the injured hippocampus and that this effect was particularly distinct when 7-, 28-, and 35-days predegenerated nerve grafts were used. It is recently known that a totally transected peripheral nerve exhibits biphasic neurite-promoting activity. The early phase lasts 7 days. The aim of the present study was to find whether short-time predegenerated (1-6 days) peripheral nerve grafts exert any neurotrophic effect and when this influence is maximal. Experiments were carried out on adult male Wistar rats. Sciatic nerves were totally transected and following 1, 2, 3, 4, 5 and 6 days their distal stumps were implanted into the hippocampus. Control animals were treated with non-predegenerated sciatic nerve grafts. In all groups FITC-HRP was injected into the free end of graft six weeks following surgery. Special histochemic technique showed AChE-positive fibres inside the grafts of all examined groups. Fluorescence microscopic examination revealed the labeled cells in all examined groups, however their number was different in each group, depending on the predegeneration stage. They were most numerous at the fourth day of predegeneration. 相似文献
4.
Microtubule reassembly in vitro of Strongylocentrotus purpuratus sperm tail outer doublet tubulin 总被引:3,自引:0,他引:3
Strongylocentrotus purpuratus outer doublet microtubules were prepared by extraction of sperm tail axonemes with 0.6 m-KCl. Sonication of the outer doublet microtubules in 5 mm-2-(N-morpholino)ethanesulphonic acid, 1 mm-ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid, 1 inm-MgSO4 (pH 6.7) solubilized up to 35% of the outer doublet protein, depending on the power input, in a manner which was non-selective for either subfiber. Tubulin comprised 75 to 85% of the total solubilized protein in a 200,000 g supernatant obtained from the sonicated suspension. Colchicine-binding assays demonstrated that the tubulin was largely in a native form (KA = 106, liters mole?; 0.74 mole of colchicine bound per mole of tubulin at infinite concentration of colchicine).Microtubule self-assembly from the 200,000 g supernatants in the absence of added seeds or glycerol was quantitated by light-scattering at 350 nm. The critical protein concentration for assembly was 0.55 mg ml?1 at 37 °C and the reaction occurred optimally in the presence of 2 mm-GTP and 150 mm-KCl. The solubilized outer doublet tubulin formed singlet microtubules upon reassembly under our in vitro conditions. The authenticity of the microtubules was verified by both negative stain and thin-section electron microscopy. Polymerization was prevented by colchicine and podophyllotoxin, and depolymerization occurred rapidly on cooling the microtubules to 0 °C.The susceptibility of the reassembled microtubules to low temperature suggested that they could be “recycled” by the warm assembly-cold disassembly procedure developed for vertebrate brain (Borisy et al., 1974). Twice recycled outer doublet tubulin was devoid of high molecular weight microtubule-associated proteins, as judged by gel electrophoresis in the presence of sodium dodecyl sulfate. However, trace amounts (less than 5%) of intermediate molecular weight material was visible on heavily overloaded gels. The function of this material is uncertain, but it is not chemically equivalent to the tau factor of vertebrate brain (Weingarten et al., 1975), since it cannot be separated from the tubulin by phosphocellulose adsorption. In addition, phosphocellulose-treated tubulin reassembled to the same extent as untreated tubulin, suggesting that the reassembly of outer doublet tubulin does not require the protein equivalents of brain microtubule-associated proteins or tau factor. If accessory proteins are required for the reassembly of outer doublet tubulin, they are not removed by phosphocellulose under the conditions employed, and they must comprise less than 5% of the total protein. 相似文献
5.
Microtubule independent vesiculation of Golgi membranes and the reassembly of vesicles into Golgi stacks 总被引:2,自引:1,他引:2
下载免费PDF全文

《The Journal of cell biology》1993,122(6):1197-1206
We have recently shown that ilimaquinone (IQ) causes the breakdown of Golgi membranes into small vesicles (VGMs for vesiculated Golgi membranes) and inhibits vesicular protein transport between successive Golgi cisternae (Takizawa et al., 1993). While other intracellular organelles, intermediate filaments, and actin filaments are not affected, we have found that cytoplasmic microtubules are depolymerized by IQ treatment of NRK cells. We provide evidence that IQ breaks down Golgi membranes regardless of the state of cytoplasmic microtubules. This is evident from our findings that Golgi membranes break down with IQ treatment in the presence of taxol stabilized microtubules. Moreover, in cells where the microtubules are first depolymerized by microtubule disrupting agents which cause the Golgi stacks to separate from one another and scatter throughout the cytoplasm, treatment with IQ causes further breakdown of these Golgi stacks into VGMs. Thus, IQ breaks down Golgi membranes independently of its effect on cytoplasmic microtubules. Upon removal of IQ from NRK cells, both microtubules and Golgi membranes reassemble. The reassembly of Golgi membranes, however, takes place in two sequential steps: the first is a microtubule independent process in which the VGMs fuse together to form stacks of Golgi cisternae. This step is followed by a microtubule-dependent process by which the Golgi stacks are carried to their perinuclear location in the cell. In addition, we have found that IQ has no effect on the structural organization of Golgi membranes at 16 degrees C. However, VGMs generated by IQ are capable of fusing and assembling into stacks of Golgi cisternae at 16 degrees C. This is in contrast to the cells recovering from BFA treatment where, after removal of BFA at 16 degrees C, resident Golgi enzymes fail to exit the ER, a process presumed to require the formation of vesicles. We propose that at 16 degrees C there may be general inhibition in the process of vesicle formation, whereas the process of vesicle fusion is not affected. 相似文献
6.
VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments 总被引:4,自引:0,他引:4
The AAA-ATPase p97/Cdc48 functions in different cellular pathways using distinct sets of adapters and other cofactors. Together with its adaptor Ufd1-Npl4, it extracts ubiquitylated substrates from the membrane for subsequent delivery to the proteasome during ER-associated degradation. Together with its adaptor p47, on the other hand, it regulates several membrane fusion events, including reassembly of Golgi cisternae after mitosis. The finding of a ubiquitin-binding domain in p47 raises the question as to whether the ubiquitin-proteasome system is also involved in membrane fusion events. Here, we show that p97-p47-mediated reassembly of Golgi cisternae requires ubiquitin, but is not dependent on proteasome-mediated proteolysis. Instead, it requires the deubiquitinating activity of one of its cofactors, VCIP135, which reverses a ubiquitylation event that occurs during mitotic disassembly. Together, these data reveal a cycle of ubiquitylation and deubiquitination that regulates Golgi membrane dynamics during mitosis. Furthermore, they represent the first evidence for a proteasome-independent function of p97/Cdc48. 相似文献
7.
Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway 总被引:20,自引:25,他引:20
下载免费PDF全文

Immunoelectron microscopy and stereology were used to identify and quantitate Golgi fragments in metaphase HeLa cells and to study Golgi reassembly during telophase. On ultrathin frozen sections of metaphase cells, labeling for the Golgi marker protein, galactosyltransferase, was found over multivesicular Golgi clusters and free vesicles that were found mainly in the mitotic spindle region. The density of Golgi cluster membrane varied from cell to cell and was inversely related to the density of free vesicles in the spindle. There were thousands of free Golgi vesicles and they comprised a significant proportion of the total Golgi membrane. During telophase, the distribution of galactosyltransferase labeling shifted from free Golgi vesicles towards Golgi clusters and the population of free vesicles was depleted. The number of clusters was no more than in metaphase cells so the observed fourfold increase in membrane surface meant that individual clusters had increased in size. More than half of these had cisterna(e) and were located next to "buds" on the endoplasmic reticulum. Early in G1 the number of clusters dropped as they congregated in the juxtanuclear region and fused. These results show that fragmentation of the Golgi apparatus yields Golgi clusters and free vesicles and reassembly from these fragments is at least a two-step process: (a) growth of a limited number of dispersed clusters by accretion and fusion of vesicles to form cisternal clusters next to membranous "buds" on the endoplasmic reticulum; (b) congregation and fusion to form the interphase Golgi stack in the juxtanuclear region. 相似文献
8.
Microtubule dynamics determine chromosome lagging and transport of acentric fragments 总被引:2,自引:0,他引:2
The general direction of transport of spindle inclusions including acentric chromosome fragments during mitosis in endosperm of the higher plants Haemanthus is predictable and stage-dependent. Their segregation is random and they are usually eliminated from the spindle. This transport is superimposed on normal chromosome segregation. Thus, there are 2 superimposed mitotic transports: one which distributes kinetochores and the other which distributes spindle inclusions. The functional relation of these 2 transports to each other is not well understood. However, due to this 'non-kinetochore transport,' fragments may persist a few consecutive divisions before being permanently eliminated from the nucleus. Malfunction of kinetochores of any chromosome, resulting in the loss of their anchorage within the spindle, subjects them to 'non-kinetochore' transport and nearly certain, permanent elimination from the spindle. Additionally, experimental evidence presented here demonstrates that rapid polymerization (elongation) of microtubules may desynchronize anaphase and cause lagging of whole chromosomes. This may be one more, previously unconsidered, factor which may cause the malfunction of the kinetochore fiber and consequent elimination of one or a few chromosomes from the spindle. 相似文献
9.
Yang Y Feng LQ Zheng XX 《The international journal of biochemistry & cell biology》2011,43(8):1147-1156
Autophagy, a major degradative pathway of the lysosomal system, has been implicated in various neurodegenerative diseases. During autophagic process, organelles and proteins are encapsulated in double-membrane vacuoles called autophagosomes, which finally fuse with lysosomes to form autolysosomes where incorporated materials are degraded. Despite extensive investigations in identifying the molecular components that participate in autophagy, little is known about routes and dynamics of autophagosomes/autolysosomes in the neurites of live cells. Hence, in the present study, we aim to investigate the biophysical characteristics of neuritic transport of autolysosomes in PC12 cells. Our study demonstrated that monomeric red fluorescence protein-light chain 3 (mRFP-LC3)-labeled autolysosomes were motile and moved along PC12 neurites in both anterograde and retrograde directions with a bias towards the nucleus during starvation. By using image processing, quantitative analysis was made to show the dynamic biophysical characteristics of these vesicles. The average velocity of anterograde and retrograde transport was 0.33±0.04μm/s and 0.39±0.05μm/s, respectively. Disruption of microtubules by nocodazole completely abolished their movements, suggesting the neuritic transport of autolysosomes depends on microtubules. The directional transport of autolysosomes was also affected by blockage of motor protein activity. Altogether, our study documents many aspects of the highly dynamic movement of autolysosome in PC12 neurites. Autolysosomes transported in a bi-directional manner along microtubules by dynein and kinesin motor proteins. These findings provide valuable insight into understanding the mechanism and control of autophagy in neurites under physiological and pathological conditions. 相似文献
10.
Coat protein I (COPI) transport vesicles can be tethered to Golgi membranes by a complex of fibrous, coiled-coil proteins comprising p115, Giantin and GM130. p115 has been postulated to act as a bridge, linking Giantin on the vesicle to GM130 on the Golgi membrane. Here we show that the acidic COOH terminus of p115 mediates binding to both GM130 and Giantin as well as linking the two together. Phosphorylation of serine 941 within this acidic domain enhances the binding as well as the link between them. Phosphorylation is mediated by casein kinase II (CKII) or a CKII-like kinase. Surprisingly, the highly conserved NH(2)-terminal head domain of p115 is not required for the NSF (N-ethylmaleimide-sensitive fusion protein)-catalyzed reassembly of cisternae from mitotic Golgi fragments in a cell-free system. However, the ability of p115 to link GM130 to Giantin and the phosphorylation of p115 at serine 941 are required for NSF-catalyzed cisternal regrowth. p115 phosphorylation may be required for the transition from COPI vesicle tethering to COPI vesicle docking, an event that involves the formation of trans-SNARE [corrected] (trans-soluble NSF attachment protein [SNAP] receptor) complexes. 相似文献
11.
12.
M M Yllera-Fernández N Crozet M Ahmed-Ali 《Molecular reproduction and development》1992,32(3):271-276
The distribution of microtubules was studied during fertilization of the rabbit oocyte by immunofluorescence microscopy after staining with an anti-alpha-tubulin antibody. In ovulated oocytes, microtubules were found exclusively in the meiotic spindle. At fertilization, the paternal centrosome generated sperm astral microtubules. During pronuclear development, the sperm aster increased in size, and microtubules extended from the male pronucleus to the egg center and towards the female pronucleus. These observations indicate that microtubules emanating from the sperm centrosome were involved in the movements leading to the union of the male and female pronuclei. At late pronuclear stage, microtubules surrounded the adjacent pronuclei. The mitotic spindle that emerged from the perinuclear microtubules contained broad anastral poles. 相似文献
13.
Mao H Wang Y Li Z Ruchalski KL Yu X Schwartz JH Borkan SC 《The Journal of biological chemistry》2004,279(15):15472-15480
The cytoprotective effect of heat stress proteins on epithelial cell detachment, an important cause of acute, ischemic renal failure, was examined after ATP depletion by evaluating focal adhesion complex (FAC) integrity. The intracellular distribution of FAC proteins (paxillin, talin, and vinculin) was assessed by immunohistochemistry before, during, and after exposure of renal epithelial cells to metabolic inhibitors. The resulting ATP depletion caused reversible re-distribution of all three proteins from focal adhesions to the cytosol. Paxillin, a key adaptor protein, was selected as a surrogate marker for FAC integrity in subsequent studies. Prior heat stress increased hsp72, a molecular chaperone, in both the Triton X-100-soluble and -insoluble protein fractions. Compared with ATP depleted control, heat stress significantly decreased paxillin and hsp72 shift from the Triton X-100 soluble to the insoluble protein fraction (an established marker of denaturation and aggregation); increased paxillin-hsp72 interaction detected by co-immunoprecipitation; enhanced paxillin extractability from Triton X-100-insoluble precipitates, increased the reformation of focal adhesions, and improved cell attachment (p < 0.05). To determine whether hsp72 mediates protection afforded by heat stress, cells were infected with adenovirus containing human hsp72 or empty vector. Hsp72 overexpression increased its interaction with paxillin and improved focal adhesion reformation during recovery, mimicking the protective effects of heat stress. These data suggest that hsp72 facilitates the reassembly of focal adhesions and improves cell attachment by reducing paxillin denaturation and increasing its re-solubilization after ATP depletion. 相似文献
14.
Sawin KE 《Current biology : CB》2000,10(23):R860-R862
Recent studies have suggested that proteins found at the tips of microtubules in vertebrate cells may play an important role in intracellular membrane transport processes. Evidence from fission yeast indicates that such proteins can also regulate microtubule dynamics. 相似文献
15.
Abal M Piel M Bouckson-Castaing V Mogensen M Sibarita JB Bornens M 《The Journal of cell biology》2002,159(5):731-737
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration. 相似文献
16.
《The Journal of cell biology》1993,122(2):349-359
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron. 相似文献
17.
Summary Microtubules (MT) are a feature of all eukaryotic cells. However, they have not been observed in the cytoplasm of the vegetative phase ofAcetabularia acetabulum. Previous investigators have reported that, in the propagative phase, MTs function as anchors in the transport of secondary nuclei to the cap. They also form elaborate arrays around nuclei during cyst formation. The life history ofA. acetabulum is marked by changes in chromatin, the nucleolus, and the perinuclear cytoplasm. In this study light microscopical features of the nucleolus and changes in chromatin, labelled with anti-histon antibodies, were used to define the developmental stages. Anti-tubulin antibodies have been used to trace the origin and development of MTs, MTs are formed on the surface of the primary nucleus. They are organized first into short thick sticks and then later elongate into thinner strands which enclose the nucleus in a dense network. Following these events on the surface of the nucleus, the spindle develops inside the nuclear membrane which remains intact throughout the mitotic division. 相似文献
18.
In yeast, remodeling of PHO5 promoter chromatin upon activation is accompanied by transient hyperacetylation and subsequent eviction of histones from the promoter in trans. In the course of rerepression, nucleosomes have to be reassembled on the promoter. We have analyzed where the histones for reassembly of the inactive promoter chromatin come from. The use of a strain with two differently tagged and differently regulated versions of histone H3 allowed us to discriminate between histones originating from the chromatin fraction and histones arising from the soluble histone pool. In this way, we show that the incorporated histones originate from a source in trans. Promoter closure occurs very rapidly, and the histone chaperones Asf1 and Hir1 as well as the SWI/SNF nucleosome remodeling complex appear to be important for rapid reassembly of nucleosomes at the PHO5 promoter. 相似文献
19.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC
guard mother cell
- GC
guard cell
- IMB
interphase microtubule band
- MT
microtubule
- PPB
preprophase band
- SMC
subsidiary mother cell
- SC
subsidiary cell 相似文献
20.
J Lewin-Kowalik A L Sieroń M Krause J J Barski D Górka 《Acta physiologica Hungarica》1992,79(3):219-231
The present work has a twofold aim: 1. To ascertain whether the stimulative influence of peripheral nerve grafts on injured hippocampal neurons depends on the time lapse after transection and; 2. To examine whether the mentioned effect runs parallel to the time-dependent changes of proteins contents and composition in the submicrosomal fraction from transected rat sciatic nerves. Fluorescence microscope examination revealed that FITC-HRP labeled cells extending their neurites into the implanted peripheral nerve segments were particularly numerous among the hippocampal neurons when 7- and 35-day-old predegenegated distal stumps were used as grafts. Discontinuous SDS-slab polyacrylamide gel electrophoresis of submicrosomal fraction proteins obtained from distal stumps of rat sciatic nerves was performed at the 7, 14, 21 and 35 days after transection. Among the obtained protein fractions the most interesting seem to be the ones of 47 and 54 kDa, which reached maximal levels at the 7th day and the 50 kDa fraction with a maximum at the 35th experimental day. It is possible that the growth promoting power of the employed grafts depends on the presence of proper proteins. 相似文献