首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase. Symptoms of intoxication appear after approximately 50% of the acetylcholinesterase is inhibited. However, complete inhibition of carboxylesterase and butyrylcholinesterase has no known effect on an animal's well being. Paraoxonase hydrolyzes organophosphorus compounds and is not inhibited by them. Our goal was to determine the effect of plasma carboxylesterase deficiency on response to sublethal doses of 10 organophosphorus toxicants and one carbamate pesticide. Homozygous plasma carboxylesterase deficient ES1(-/-) mice and wild-type littermates were observed for toxic signs and changes in body temperature after treatment with a single sublethal dose of toxicant. Inhibition of plasma acetylcholinesterase, butyrylcholinesterase, and plasma carboxylesterase was measured. It was found that wild-type mice were protected from the toxicity of 12.5mg/kg parathion applied subcutaneously. However, both genotypes responded similarly to paraoxon, cresyl saligenin phosphate, diisopropylfluorophosphate, diazinon, dichlorvos, cyclosarin thiocholine, tabun thiocholine, and carbofuran. An unexpected result was the finding that transdermal application of chlorpyrifos at 100mg/kg and chlorpyrifos oxon at 14mg/kg was lethal to wild-type but not to ES1(-/-) mice, showing that with this organochlorine, the presence of carboxylesterase was harmful rather than protective. It was concluded that carboxylesterase in mouse plasma protects from high toxicity agents, but the amount of carboxylesterase in plasma is too low to protect from low toxicity compounds that require high doses to inhibit acetylcholinesterase.  相似文献   

2.
It was shown that locust cholinesterase splits various thiocholine esters with different rate. Hydrolysis of p-NPA is due to the effect of carboxylesterase. The latter differs from cholinesterase by a low sensitivity to eserine and cation-containing organophosphorus inhibitor methylsulfomethylate-O-ethyl-S-(beta-ethylmercaptoethyl) methylthiophosphonate, as well as by higher sensitivity to triorthocresylphosphate. The results obtained are discussed in relation to possible differences of the active surface of the enzymes studied.  相似文献   

3.
在室内模拟田间药剂的选择压力,用阿维菌素、哒螨灵和甲氰菊酯对二斑叶螨Tetranychuc urticae逐代处理,以选育其抗性种群。选育至12代,对阿维菌素抗性增长到6.72倍,对哒螨灵抗性增长到12.1倍,对甲氰菊酯抗性增长到19.9倍。酶抑制剂和离体酶活性的测定结果表明,阿维菌素抗性种群的多功能氧化酶和谷胱甘肽S-转移酶的活性均有所提高;二斑叶螨对哒螨灵的抗性可能与多功能氧化酶、羧酸酯酶的活性增强有关;而羧酸酯酶、多功能氧化酶和谷胱甘肽S-转移酶活性的增强可能是二斑叶螨对甲氰菊酯产生抗性的主要原因。  相似文献   

4.
Human blood monocyte carboxylesterase (CBE) is inhibited by a variety of organophosphorus compounds including arylphosphates and arylphosphites and some alkylphosphites. Triphenyl phosphate and triphenyl phosphite with Ki values of 8 × 10−9 M and 4.8 × 10−8 M, respectively, are the most potent inhibitors of this enzyme evaluated by this study. The arylphosphates vary in their capacity to inhibit carboxylesterase activity. Diphenyl phosphate with its strong negative charge is not a potent inhibitor (Ki = 1 × 10−4 M), whereas if its negative charge is neutralized, as in diphenyl methyl phosphate, its capacity to inhibit carboxylesterase is significantly increased. Compounds with increased bulk, such as trinaphthyl phosphate, only inhibit the enzyme at concentrations of 10−5 M or greater. Arylphosphites have inhibitory capacities similar to the arylphosphates. Alkylphosphites (tributyl phosphite/triethyl phosphite) inhibit carboxylesterase activity, whereas alkylphosphates (tributyl phosphate/triethyl phosphate) have no inhibitory effect. Arylphosphines and arylphosphine oxides do not inhibit carboxylesterase activity. This study demonstrates that organophosphates and organophosphites are relatively effective inhibitors of human monocyte CBE activity with the exception of the alkylphosphates which have no inhibitory activity. We conclude that molecular bulk and charge have a significant role in determining the potency of organophosphorus inhibitors of monocyte CBE. The observed variations in the degree of esterase inhibition by organophosphorus compounds as well as the differences in the pathological expression of neuropathic disorders associated with such chemicals suggest that different esterase enzymes derived from the family of esterase genes may mediate the different neuropathies observed with organophosphorus exposures. Such data also provide the rationale for the kinetic analyses of esterases and the design of non-toxic organophosphorus compounds with low or no monocyte CBE inhibitory capacity to reduce the potential of these commonly used chemicals for human toxicity.  相似文献   

5.
Based on our own and literature data, a detailed substrate–inhibitor analysis of catalytic properties of cholinesterase of hemolymph of the Pacific gastropod mollusc Neptunea eulimata has been carried out. Using specific substrates and organophosphorus inhibitors, homogeneity of the enzyme preparation has been shown. The study of the substrate specificity, using 8 substrates—choline, fluorogenic and chromogenic esters—has revealed some features of similarity with mammalian erythrocyte cholinesterase. At the same time, testing of a large group (33 compounds) of organophosphorus inhibitors with various structure, including hydrophobic inhibitors studied for the first time, has established both quantitative and qualitative differences from the mammalian blood enzymes. It is concluded that cholinesterase from the neptunea hemolymph cannot be ascribed unanimously to the type of acetylhydrolases of acetylcholine (EC 3.1.1.7).  相似文献   

6.
Young animals are more sensitive than adults to the neurotoxic effects of some organophosphorus insecticides. Many investigators attribute this difference in sensitivity to the immaturity of the detoxification capacity of preweanling rats. Chlorpyrifos [O,O-diethylO-(3,5,6-trichloro-2-pyridyl)phosphorothionate] is an organophosphorus insecticide that demonstrates considerable age-related sensitivity. The carboxylesterases are a group of related enzymes that detoxify organophosphorus insecticides by stoichiometrically binding these molecules before they can inhibit acetylcholinesterase. This study presents in vitro and in vivo evidence demonstrating that the carboxylesterases are critical for explaining the age-related sensitivity of chlorpyrifos. The data show that the fetal rat and the postnatal day 17 (PND17) rat pup have fewer molecules of carboxylesterase (less activity), less sensitive molecules of carboxylesterase, and a larger proportion of chlorpyrifos-insensitive molecules of carboxylesterase. An in vitro mixing experiment, using adult striatum as a source of acetylcholinesterase and liver homogenates as a source of carboxylesterase, demonstrates that the adult liver carboxylesterases are superior to the PND17 liver carboxylesterases for detoxifying chlorpyrifos. In the in vivo experiments the time course profiles of carboxylesterase and cholinesterase activity following a maximum tolerated dose of chlorpyrifos also suggest that the carboxylesterases of the PND17 rat were less capable of detoxifying chlorpyrifos. Carboxylesterase activity in the preweanling rat was not as severely inhibited as in the adult, but decrements in cholinesterase activity as a result of chlorpyrifos treatment were comparable. These in vitro and in vivo findings support the previously proffered postulate that the carboxylesterases are critical for determining the age-related sensitivity of chlorpyrifos. In addition, these detailed experiments allow us to propose that the detoxification potential of these enzymes is multifaceted, and depends on the (1) amount of activity (i.e., number of molecules), (2) affinity for the insecticide or metabolite, and (3) amount of carboxylesterase activity that is refractory to inhibition by the insecticide or metabolite.  相似文献   

7.
1. The effect of temperature and pH was studied on the kinetics of inhibition of horse serum and human serum cholinesterase by four organophosphorus compounds and five carbamates. 2. For all compounds, and at each pH and temperature, the inhibition followed the kinetics of a bimolecular reaction with the inhibitor in excess, and with a negligible concentration of the Michaelis complex. 3. The second-order rate constants (k(a)) for inhibition of human serum cholinesterase by one organophosphate and one carbamate increased from 5 degrees to 40 degrees C with an apparent activation energy of 46kJ/mol (11kcal/mol). 4. The k(a) constant for inhibition of horse serum cholinesterase increased with temperature from 5 degrees to 30 degrees C, and then decreased from 30 degrees to 40 degrees C. The theoretical interpretation of such an unusual effect of temperature is derived. 5. The increase of k(a) with pH (human serum cholinesterase) followed the dissociation curve for a single group on the enzyme (pK7.5). 6. Rate constants for decarbamoylation (k(+3)) were determined, and the time-course of inhibition was calculated from the k(a) and k(+3) constants.  相似文献   

8.
A comparative study was carried out of action of 18 specifically synthesized anabasine derivatives and their analogs, including diiodomethylates of anabasine acylates and bis-anabasine derivatives of dicarboxylic glutaric, adipic, azelaic, and sebacic acids, on activity of cholinesterase of brain of frog Rana temporaria and visual ganglia of the Pacific squid Todarodes pacificus and Commander squid Berryteuthis magister from different zones of habitations in the northwest part of the Pacific Ocean as well as of erythrocyte acetylcholinesterase and serum butyrylcholinesterase. These compounds were not submitted to cholinesterase hydrolysis and turned out to be efficient reversible inhibitors that have to certain degree specificity toward the studied enzymes both by their potency and by the type of their inhibitory action. Specificity of effects of the key structural fragments of the anabasine grouping on anticholinesterase efficacy was checked. Also performed was analysis of action of 24 reversible and irreversible organophosphorus inhibitors, anabasine derivatives, toward erythrocyte acetylcholinesterase and serum butyrylcholinesterase. The anticholinesterase effects of anabasine-containing inhibitors differing in structure and action mechanism was compared.  相似文献   

9.
A comparative study was carried out of the substrate and inhibitory specificity of cholinesterase preparations from squids, representatives of 3 genes and 5 species of the Gonatidae family:Berryteuthis (B. magister andB. anonichos),Gonatus (G. kamtschaticus andG. tinro), andGonatipsis (G. borealis), that have overlapping habitation areals in the Bering Sea. As substrates, there were used bromides of acetylthiocholine, propionylthiocholine, and butyrylthiocholine, as organophosphorus inhibitors, diisopropylfluorophosphate, a cation-containing inhibitor, and 4 hydrophobic compounds. The homogeneity of the cholinesterase activity in these preparations has been shown, the intergenus and interspecies differences in the enzyme properties are revealed, and also the peculiarity of properties of enzymes from Gonatidae squids is emphasized in comparison with cholinesterase from the Pacific squidTodarodes paciflcus and “standard” mammalian enzymes (from human erythrocytes and horse blood serum). The revealed interspecies differences are discussed in terms of evolutionary development of the Gonatidae family.  相似文献   

10.
The esterase activity of guinea-pig serum was investigated. A 3-fold purification was achieved by removing the serum albumin by Blue Sepharose CL-6B affinity chromatography. The partially purified enzyme preparation had carboxylesterase and cholinesterase activities of 1.0 and 0.22 mumol of substrate/min per mg of protein respectively. The esterases were labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated electrophoretically on sodium dodecyl sulphate/polyacrylamide gels. Two main labelled bands were detected: band I had Mr 80 000 and bound 18-19 pmol of [3H]DiPF/mg of protein, and band II had Mr 58 000 and bound 7 pmol of [3H]DiPF/mg of protein. Bis-p-nitrophenyl phosphate (a selective inhibitor of carboxylesterase) inhibited most of the labelling of bands I and II. The residual labelling (8%) of band I but not band II (4%) was removed by preincubation of partially purified enzyme preparation with neostigmine (a selective inhibitor of cholinesterase). Paraoxon totally prevented the [3H]DiPF labelling of the partially purified enzyme preparation. Isoelectrofocusing of [3H]DiPF-labelled and uninhibited partially purified enzyme preparation revealed that there were at least two separate carboxylesterases, which had pI3.9 and pI6.2, a cholinesterase enzyme (pI4.3) and an unidentified protein that reacts with [3H]DiPF and has a pI5.0. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these enzymes showed that the carboxylesterase enzymes at pI3.9 and pI6.2 corresponded to the 80 000-Mr subunit (band I) and 58 000-Mr subunit (band II). The cholinesterase enzyme was also composed of 80 000-Mr subunits (i.e. the residual labelling in band I after bis-p-nitrophenyl phosphate treatment). The unidentified protein at pI5.0 corresponded to the residual labelling in band II (Mr 58 000), which was insensitive to neostigmine and bis-p-nitrophenyl phosphate. These studies show that the carboxylesterase activity of guinea-pig serum is the result of at least two separate and distinct enzymes.  相似文献   

11.
Introduction of the triple bond in the leaving group of the organophosphorus inhibitor molecule gives a sharp raise of the inhibitor activity but does not change principal characteristics of the cholinesterase inhibition mechanism. The reactivation experiments suggest that inactivation of cholinesterases by these compounds occurs due to phosphorylating of the serine hydroxyl by the corresponding phosphoric acid. A close similarity was shown between acetylenic and saturated organophosphorus inhibitors in altering ka upon change of pH and tetraalkylammonium ions action. It is demonstrated that S-alkynyl esters of thioacetic acid are slowly hydrolyzed by acetylcholinesterase and cholinesterase without irreversible inhibition of the enzymes.  相似文献   

12.
The soluble and immobilized cholinesterases (acetyl cholinesterase of human blood erythrocytes (EC 3.1.1.7) and butyryl cholinesterase of equine blood serum, (EC 3.1.1.8] were inactivated by such irreversible inhibitors as diisopropyl fluorophosphate (DFP), O,O-dimethyl-O-(2,2)-dichlorovinyl) phosphate (DDVP), paraoxone, armine. The inactivated enzymes were reactivated under the effect of TMB-4 (1,1'-trimethylene-bis)-4-formyl-pyridine bromide (dioxime). The values of the reactivation rate constants proved to be equal both for the soluble and immobilized cholinesterases inactivated by the same irreversible inhibitor. The immobilized enzyme is simpler and more correct to study the reactivating action than the soluble one.  相似文献   

13.
Carboxylesterase was obtained from human liver in an electrophoretically homogeneous form. The monomeric molecular weight of the enzyme was 60,000 and the enzyme associated to form trimers. Purified human liver carboxylesterase was compared with human serum carboxylesterase, purified earlier. Serum carboxylesterase hydrolyzed a typical cholinesterase substrate and aryl acylamide, whereas liver carboxylesterase did not hydrolyze these compounds. Both carboxylesterases catalyzed the hydrolysis of short-chain triacylglycerols, such as tributyrin, and medium-chain monoacylglycerols, such as monocaprin, but not the hydrolysis of long-chain triacylglycerols. Serum carboxylesterase activity was inhibited by p-trimethylammoniumanilinium dichloride and neostigmine, whereas liver carboxylesterase activity was not affected by these compounds. Liver and serum carboxylesterase activities were both strongly inhibited by phenylmethylsulfonyl fluoride.  相似文献   

14.
It is established that derivatives of polymethylene bistrimethylammonium (CH3)3N+(CH2)nN+(CH3)3 (n = 4-10) are reversible competitive and mixed action inhibitors with respect to acetylcholinesterase of human erythrocytes, butyryl cholinesterase of horse blood serum, cholinesterase of frog brain and Todarodes pacificus optical ganglion. In case of mammals and frog cholinesterase the inhibitors efficiency rises with n, but the activity of the Todarodes pacificus cholinesterase less sensitive of the inhibitors is characterized by a "step" dependence on the length of the polymethylene chain of the inhibitor molecule. Studies in sensitivity of cholinesterases to this type of inhibitors revealed differences between enzymes of the same type in different animals.  相似文献   

15.
There was studied action of aliphatic alcohols (ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol), and pH on various kinds of serum cholinesterase. At inhibition of the cholinesterase hydrolytic activity under effect of alcohols the key role was played not by the total number of carbon atoms in the alcohol molecule, but by the “efficient length” of the carbohydrate chain. The fact that the presence of alcohols did not affect parameters of reversible inhibition of cholinesterase by onium ions tetramethylammonium and choline allows suggesting the absence of action of solvents on specific sorption of acetylcholine in the enzyme active center. With aid of two sets of hydrophobic organophosphorus inhibitors (OPI) (12 compounds), we have managed to estimate both the degree and the character itself of serum cholinesterase.  相似文献   

16.
The review presents the data on a comparative reactivity of 68 cholinesterase preparations from various organs and tissues in a number of vertebrates and invertebrates based on the sensitivity to the two highly specific and most studied organophosphorus inhibitors, diisopropyl fluorophosphates (DFP) and (2-ethoxymethyl phosphoryl thioethyl) ethyl (methyl) sulphonium sulphomethylate (GD-42). An analysis of the data obtained suggests a great diversity of enzymologic characteristics of cholinesterase preparations in vertebrates and invertebrates observed even in closely related enzymes in animals at virtually the same level of evolutionary development.  相似文献   

17.
Salts of pyrilium, thiopyrilium and selenopyrilium derivatives at pH 7.5 and temperature of 25 degrees C are studied for their effect on the catalytic activity of acetyl cholinesterase (EC 3.1.1.7) of human blood erythrocytes and butyryl cholinesterase (EC 3.1.1.8) of horse blood serum which is measured by the method of potentiometric titration. All enumerated salts are established to be strong reversible inhibitors of mixed-type cholinesterases, that is testified by small values of the inhibitory constants: competitive Ki, noncompetitive K'i and generalized K epsilon. Pyrilium and selenopyrilium salts inhibit acetyl cholinesterase of human blood erythrocytes to a higher extent than butyryl cholinesterase of horse blood serum, and thiopyrilium salts inhibit the latter to the highest extent. By the value of the inhibitory effect on acetyl cholinesterase of human blood erythrocytes thiopyrilium salts exceed the analogous pyrilium salts, whereas in experiments with butyl cholinesterase of horse blood serum there is an opposite dependence.  相似文献   

18.
Organophosphorus poisoning caused by some pesticides and nerve agents is a life-threating condition that must be swiftly addressed to avoid casualties. Despite the availability of medical countermeasures, the clinically available compounds lack a broad spectrum, are not effective towards all organophosphorus toxins, and have poor pharmacokinetics properties to allow them crossing the blood-brain barrier, hampering cholinesterase reactivation at the central nervous system. In this work, we designed and synthesised novel isatin derivatives, linked to a pyridinium 4-oxime moiety by an alkyl chain with improved calculated properties, and tested their reactivation potency against paraoxon- and NEMP-inhibited acetylcholinesterase in comparison to the standard antidote pralidoxime. Our results showed that these compounds displayed comparable in vitro reactivation also pointed by the in silico studies, suggesting that they are promising compounds to tackle organophosphorus poisoning.  相似文献   

19.
Literature data have been summarized on interaction of cholinesterases of some mammals and arthropods with a group of isomer derivatives of alkaloid lupini and its epimer epilupinin. As substrates of cholinesterases of several mammals there are studied 8 acetates containing in their molecules the chinolysidin bicycle with different structure of N-alkyl radical, which showed certain elements of specificity of action. For 2 isomer esters that are derivatives of the protonated base of the lupinin and epilupinin structures, differences in their substrate characteristics were revealed. The polyenzyme analysis if anticholinesterase efficiency was performed for 30 organophosphorus inhibitors that are dialkoxyphosphorus derivatives of lupinin and epilupinin; as a result, quite a few peculiarities of their action depending on their structure were revealed. Several tested compounds turned out to act as specific inhibitors of cholinesterases of some mammals and arthropods.  相似文献   

20.
A dendritic poly(2-alkyloxazoline)-based polymer was studied as a new carrier system for the organophosphorus-hydrolyzing recombinant enzymes, organophosphorus acid anhydrolase and organophosphorus hydrolase. Paraoxon (PO) and diisopropylfluorophosphate (DFP) were used as model organophosphorus compounds. Changes in plasma cholinesterase activity were monitored. The cholinesterase activity was proportional to the concentrations of DFP or PO. Plasma cholinesterase activity was higher in animals receiving enzyme and oxime before the organophosphates than in the oxime-only pretreated groups. These studies suggest that cholinesterase activity can serve as an indicator for the in vivo protection by the nano-intercalated organophosphorus acid anhydrolase or organophosphorus hydrolase against organophosphorus intoxications. These studies represent a practical application of polymeric nano-delivery systems as enzyme carriers in drug antidotal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号