首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Differential expression of two cadherins in Xenopus laevis   总被引:7,自引:0,他引:7  
Using a cadherin fraction from Xenopus tissue culture cells as an immunogen, two monoclonal antibodies were obtained that allowed the characterization of two distinct cadherins in the Xenopus embryo. The two cadherins differ in molecular weight, in their time of appearance during development and in their spatial pattern of expression. One of the antigens was identified as E-cadherin. It appears in the embryonic ectoderm during gastrulation when epidermal differentiation commences and it disappears from the neural plate area upon neural induction. The second antigen could not be allocated to any of the known cadherin subtypes and was termed U-cadherin. It is present in the egg and becomes deposited in newly formed inner cell membranes during cleavage, the outer apical membranes of the embryo remaining devoid of the cadherin throughout development. U-cadherin is found on membranes of all cells up to the late neurula stages. A conspicuous polarized expression of the antigen on the membranes of individual inner cells suggests its participation in the segregation of cell layers and organ anlagen. These findings are discussed in the context of current hypotheses on the role of cadherins in establishing the spatial structure of the embryo.  相似文献   

3.
4.
5.
Elastin is the extracellular matrix protein responsible for properties of extensibility and elastic recoil in large blood vessels, lung and skin of most vertebrates. Elastin is synthesized as a monomer, tropoelastin, but is rapidly transformed into its final polymeric form in the extracellular matrix. Until recently information on sequence and developmental expression of tropoelastins was limited to mammalian and avian species. We have recently identified and characterized two expressed tropoelastin genes in zebrafish. This was the first example of a species with multiple tropoelastin genes, raising the possibility of differential expression and function of these tropoelastins in elastic tissues of the zebrafish. Here we have investigated the temporal expression and tissue distribution of the two tropoelastin genes in developing and adult zebrafish. Expression was detected early in skeletal cartilage structures of the head, in the developing outflow tract of the heart, including the bulbus arteriosus and the ventral aorta, and in the wall of the swim bladder. While the temporal pattern of expression was similar for both genes, the upregulation of eln2 was much stronger than that of eln1. In general, both genes were expressed and their gene products deposited in most of the elastic tissues examined, with the notable exception of the bulbus arteriosus in which eln2 expression and its gene product was predominant. This finding may represent a sub-specialization of eln2 to provide the unique architecture of elastin and the specific mechanical properties required by this organ.  相似文献   

6.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

7.
8.
9.
A tandemly arranged multigene family encoding putative hexose transporters in Trypanosoma brucei has been characterized. It is composed of two 80% homologous groups of genes called THT1 (six copies) and THT2 (five copies). When Xenopus oocytes are microinjected with in vitro-transcribed RNA from a THT1 gene, they express a glucose transporter with properties similar to those of the trypanosome bloodstream-form protein(s). This THT1-encoded transport system for glucose differs from the human erythrocyte-type glucose transporter by its moderate sensitivity to cytochalasin B and its capacity to transport D-fructose. These properties suggest that the trypanosomal transporter may be a good target for antitrypanosomal drugs. mRNA analysis revealed that expression of these genes was life cycle stage dependent. Bloodstream forms express 40-fold more THT1 than THT2. In contrast, procyclic trypanosomes express no detectable THT1 but demonstrate glucose-dependent expression of THT2.  相似文献   

10.
The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated. Received: 12 August 1999 / Accepted: 5 October 1999  相似文献   

11.
Kao YY  Harding SA  Tsai CJ 《Plant physiology》2002,130(2):796-807
Lignins, along with condensed tannins (CTs) and salicylate-derived phenolic glycosides, constitute potentially large phenylpropanoid carbon sinks in tissues of quaking aspen (Populus tremuloides Michx.). Metabolic commitment to each of these sinks varies during development and adaptation, and depends on L-phenylalanine ammonia-lyase (PAL), an enzyme catalyzing the deamination of L-phenylalanine to initiate phenylpropanoid metabolism. In Populus spp., PAL is encoded by multiple genes whose expression has been associated with lignification in primary and secondary tissues. We now report cloning two differentially expressed PAL cDNAs that exhibit distinct spatial associations with CT and lignin biosynthesis in developing shoot and root tissues of aspen. PtPAL1 was expressed in certain CT-accumulating, non-lignifying cells of stems, leaves, and roots, and the pattern of PtPAL1 expression varied coordinately with that of CT accumulation along the primary to secondary growth transition in stems. PtPAL2 was expressed in heavily lignified structural cells of shoots, but was also expressed in non-lignifying cells of root tips. Evidence of a role for Pt4CL2, encoding 4-coumarate:coenzyme A ligase, in determining CT sink strength was gained from cellular co-expression analysis with PAL1 and CTs, and from experiments in which leaf wounding increased PAL1 and 4CL2 expression as well as the relative allocation of carbon to CT with respect to phenolic glycoside, the dominant phenolic sink in aspen leaves. Leaf wounding also increased PAL2 and lignin pathway gene expression, but to a smaller extent. The absence of PAL2 in most CT-accumulating cells provides in situ support for the idea that PAL isoforms function in specific metabolic milieus.  相似文献   

12.
We have used whole-mount in situ hybridisation to identify genes expressed in the somitic mesoderm during Xenopus early development. We report here the analysis of eight genes whose expression pattern has not been described previously. They include the Xenopus homologues of eukaryotic initiation factor 2beta, methionine adenosyltransferase II, serine dehydratase, alpha-adducin, oxoglutarate dehydrogenase, fragile X mental retardation syndrome related protein 1, monocarboxylate transporter and voltage-dependent anion channel 1. Interestingly, these genes exhibit very dynamic expression pattern during early development. At early gastrula stages several genes do not show localised expression pattern, while other genes are expressed in the marginal mesoderm or in ectoderm. As development proceeds, the expression of these genes is gradually restricted to different compartments of somite. This study thus reveals an unexpected dynamic expression pattern for various genes with distinct function in vertebrates.  相似文献   

13.
We have screened a pea genomic library using a cDNA probe derived from pea shoot RNA. From this screen, we isolated two closely related genes, designated as S2 and P4. An intriguing property of these two genes is the presence in their coding region of a repeated sequence that is conserved between them in sequence but not in the number of the repeating units. The predicted amino acid sequence suggests that these proteins could be exported and glycosylated. 3 S1 analysis reveals that one of the genes, S2, is expressed highly in stem, as expected from previous work. However, mRNA derived from the other gene, P4, is not detectable in stem tissue, but is present in tissue derived from pea pods. The 5 upstream sequence of S2 and P4 are 94% identical up to position -121, suggesting that sequences upstream of -121 are responsible for organ-specific expression of the two genes.  相似文献   

14.
15.
16.
A hamster vimentin cDNA probe has been used to isolate and characterize three Xenopus laevis intermediate filament genes, named XIF1, XIF3 and XIF6. Of these, XIF6 shows 89% homology at the amino acid level to a portion of porcine neurofilament-M. XIF6 is transcribed solely in nervous tissue of embryos, commencing at the late neural tube stage. Expression is totally dependent on an interaction between mesoderm and ectoderm during gastrulation and can be used as a marker of neural induction. XIF1 shows 94% homology and XIF3 83% homology to hamster vimentin at the amino acid level over a region of the protein. Although XIF1 and XIF3 show more homology to vimentin than to any other intermediate filament gene, they have distinct temporal and spatial patterns of expression. XIF1 expression most resembles that of vimentin in higher vertebrates, being expressed in embryonic myotome and nerve cord, whilst XIF3 is unusual in that its expression is restricted predominantly to the head in tailbud embryos.  相似文献   

17.
Differential expression of two clusters of mouse histone genes   总被引:25,自引:0,他引:25  
The mouse histone mRNAs coded for by three different cloned DNA fragments have been characterized. Two of these cloned DNA fragments, MM221 and MM291, located on chromosome 13, code for H3, H2b and H2a histone mRNAs, which are expressed at low levels in cultured mouse cells and fetal mice. The other DNA fragment, MM614, located on chromosome 3, codes for an H3 and an H2a mRNA, which are expressed at high levels in these cells. The mRNAs for each histone protein share common coding region sequences, while the untranslated regions of all the genes have diverged significantly, as judged by S1 nuclease mapping. Amino acid substitutions in some H3, H2a and H2b proteins are detected as internal cleavages in the S1 nuclease maps. All of these genes code for replication variant histone mRNAs, which are regulated in parallel with DNA synthesis.  相似文献   

18.
19.
20.
The differential regulation of the two nitrate reductase (NR, EC 1.6.6.1) genes of Arabidopsis thaliana L. Heynh was examined. cDNAs corresponding to each of the NR genes (NR1 and NR2) were used to measure changes in the steady-state levels of NR mRNA in response to nitrate, light, circadian rhythm, and tissue specificity. Although nitrate-induction kinetics of the two genes are very similar, NR1 is expressed in the absence of nitrate at a higher basal level than NR2. Nitrate induction is transient both in the roots and leaves, however the kinetics are different: the induction and decline in the roots precede that in the leaves. Light induces the expression of each of the genes with significantly different kinetics: NR2 reached saturation more rapidly than did NR1. Both genes showed similar diurnal patterns of circadian rhythm, with NR2 mRNA accumulating earlier in the morning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号