共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A fatty acid auxotroph of Caulobacter crescentus, AE6001, which displays a strict requirement for unsaturated fatty acids to grow on glucose as the carbon source has been isolated. Starvation of AE6001 for unsaturated fatty acids resulted in a block in the cell cycle. Starved cultures accumulated at the predivisional cell stage after a round of DNA replication had been completed and after a flagellum had been assembled at the pole of the cell. Cell division and cell growth failed to occur probably because the mutant was unable to synthesize a membrane. An analysis of double mutants containing the fatB503 allele and other mutations in membrane biogenesis demonstrated that the cell cycle of AE6001 blocked at a homeostatic state. The addition of oleic acid to starved cultures permitted cell division and the initiation of a new round of DNA replication. The coincident block in both the initiation of DNA replication and membrane assembly, exhibited by starved cultures of this mutant, suggests that the fatB503 gene product may be involved in the coordination of these events. 相似文献
4.
The amino acid and muropeptide compositions of murein (peptidoglycan) isolated from populations of Caulobacter crescentus predominantly composed of swarmer or stalked cells were determined and compared with the structure of murein sacculi obtained from a population of unsegregated cells. It appears that in spite of vast morphological alterations in the course of the cell cycle, the murein composition of the various cell types is not markedly different. 相似文献
5.
6.
7.
Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle 总被引:10,自引:0,他引:10
Cell division in Caulobacter crescentus yields a swarmer and a stalked cell. Only the stalked cell progeny is able to replicate its chromosome, and the swarmer cell progeny must differentiate into a stalked cell before it too can replicate its chromosome. In an effort to understand the mechanisms that limit chromosomal replication to the stalked cell, plasmid DNA synthesis was analyzed during the developmental cell cycle of C. crescentus, and the partitioning of both the plasmids and the chromosomes to the progeny cells was examined. Unlike the chromosome, plasmids from the incompatibility groups Q and P replicated in all C. crescentus cell types. However, all plasmids tested showed a ten- to 20-fold higher replication rate in the stalked cells than the swarmer cells. We observed that all plasmids replicated during the C. crescentus cell cycle with comparable kinetics of DNA synthesis, even though we tested plasmids that encode very different known (and putative) replication proteins. We determined the plasmid copy number in both progeny cell types, and determined that plasmids partitioned equally to the stalked and swarmer cells. We also reexamined chromosome partitioning in a recombination-deficient strain of C. crescentus, and confirmed an earlier report that chromosomes partition to the progeny stalked and swarmer cells in a random manner that does not discriminate between old and new DNA strands. 相似文献
8.
Caulobacter crescentus cells respond to a sudden increase in temperature by transiently inducing the synthesis of several polypeptides. Two of the proteins induced, Hsp62 and Hsp70, were shown to be analogous to the heat shock proteins of Escherichia coli, GroEL and DnaK, respectively, by immunological cross-reactivity with antibodies raised against the E. coli proteins. Two-dimensional gel electrophoretic resolution of extracts of cells labeled with [35S]methionine during heat shock led to the identification of 20 distinct Hsps in C. crescentus which are coordinately expressed, in response to heat, at the various stages of the cell division cycle. Thus, a developmental control does not seem to be superimposed on the transient activation of the heat shock genes. Nonetheless, under normal temperature conditions, four Hsps (Hsp70, Hsp62, Hsp24b, and Hsp23a) were shown to be synthesized, and their synthesis was cell cycle regulated. 相似文献
9.
Francesco Galdiero 《Archives of microbiology》1973,94(2):125-132
Summary The growth and division of cell membranes in Caulobacter crescentus has been studied. This microorganism divides into flagellated and stalked cells which are easily separated by centrifugation. The biosynthesis and partition of membranes was studied by labeling the proteins with [3H]-leucine and the lipids with [32P]. The membranes were prepared from cell spheroplasts. They further purified on a sucrose gradient.The data obtained show changes of the rate of synthesis of membranes in C. crescentus during the first synchronized division cycle (110 min): the rate is faster in the first 70 min and it drops by 26% during the following 40 min. During the period of faster synthesis the flagellated cells are changing into stalked cells while doubling in size.There is also an intracellular pool of membrane precursors the quantity of which almost doubles as the rate of membrane synthesis decreases, i.e., before cell division.The macromolecules constituting the membranes are not degraded.After division, in each membrane of the two morphologically different cell types the specific radioactivity is 50% of that of the parent cell membranes. 相似文献
10.
Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators. 相似文献
11.
The growth of a stalked bacterium, Caulobacter crescentus, has been synchronized easily and reproducibly by a new method. When this bacterium is grown to a late log phase in nutrient broth at 30 C with aeration, swarmer cells are accumulated in the culture to 80% of the whole cell population. When this culture is inoculated into fresh pre-warmed broth at twentyfold dilution, it immediately initiates synchronous cell growth. Simultaneously, synchronous cell differentiation is monitored by the susceptibility of the cells to RNA phage infection. The swarmer cells accumulated in the late log phase of growth possess nearly the same susceptibility to RNA phage infection as those in the early log phase of growth while RNA phage-adsorbing capacity is lower in such swarmer cells. It is suggested that the swarmer cells accumulated in the late log phase of growth have lost some pili. 相似文献
12.
13.
14.
Cell differentiation is an inherent component of the Caulobacter crescentus cell cycle. The transition of a swarmer cell, with a single polar flagellum, into a sessile stalked cell includes several morphogenetic events. These include the release of the flagellum and pili, the proteolysis of chemotaxis proteins, the biogenesis of the polar stalk, and the initiation of DNA replication. We have isolated a group of temperature-sensitive mutants that are unable to complete this process at the restrictive temperature. We show here that one of these strains has a mutation in a homolog of the Escherichia coli secA gene, whose product is involved in protein translocation at the cell membrane. This C. crescentus secA mutant has allowed the identification of morphogenetic events in the swarmer-to-stalked cell transition that require SecA-dependent protein translocation. Upon shift to the nonpermissive temperature, the mutant secA swarmer cell is able to release the polar flagellum, degrade chemoreceptors, and initiate DNA replication, but it is unable to form a stalk, complete DNA replication, or carry out cell division. At the nonpermissive temperature, the cell cycle blocks prior to the de novo synthesis of flagella and chemotaxis proteins that normally occurs in the predivisional cell. Although interactions between the chromosome and the cytoplasmic membrane are believed to be a functional component of the temporal regulation of DNA replication, the ability of this secA mutant to initiate replication at the nonpermissive temperature suggests that SecA-dependent events are not involved in this process. However, both cell division and stalk formation, which is analogous to a polar division event, require SecA function. 相似文献
15.
16.
17.
Chromosome replication during development in Caulobacter crescentus 总被引:40,自引:0,他引:40
18.
Development in Caulobacter reflects a level of complexity once thought only to exist in eukaryotic cells. The cell cycle and development are not isolated from each other, but are interdependent processes. Checkpoints are in place to ensure that both cell cycle and developmental processes are completed accurately before the next stage is initiated. The timing of these processes is regulated by signal transduction networks that integrate signals from DNA replication, cell division and development. These signal transduction networks achieve precise timing of the cell cycle and development by regulating temporal gene expression, and protein activity by dynamic spatial localization within the cell and timed proteolysis. 相似文献
19.
20.
Caulobacter crescentus wild-type strain CB13 is unable to utilize galactose as the sole carbon source unless derivatives of cyclic AMP are present. Spontaneous mutants have been isolated which are able to grow on galactose in the absence of exogenous cyclic nucleotides. These mutants and the wild-type strain were used to determine the pathway of galactose catabolism in this organism. It is shown here that C. crescentus catabolizes galactose by the Entner-Duodoroff pathway. Galactose is initially converted to galactonate by galactose dehydrogenase and then 2-keto-3-deoxy-6-phosphogalactonate aldolase catalyzes the hydrolysis of 2-keto-3-deoxy-6-phosphogalactonic acid to yield triose phosphate and pyruvate. Two enzymes of galactose catabolism, galactose dehydrogenase and 2-keto-3-deoxy-6-phosphogalactonate aldolase, were shown to be inducible and independently regulated. Furthermore, galactose uptake was observed to be regulated independently of the galactose catabolic enzymes. 相似文献