首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  相似文献   

2.
3.
4.
5.
6.
7.
The synthesis of cell wall polysaccharides is highly active in rapidly growing bamboo shoots. We cloned a set of BoCesA cDNAs that encode cellulose synthase from bamboo (Bambusa oldhamii) and investigated the expression patterns of the BoCesA2, BoCesA5, BoCesA6 and BoCesA7 genes. The four BoCesA genes were differentially expressed in the different parts of growing bamboo shoots, in various organs, and in multiple shoots that were cultured in vitro. They were down-regulated by α-naphthaleneacetic acid and differentially affected by thidiazuron in the multiple shoots. In situ RT-PCR analyses demonstrated that BoCesA2, BoCesA5, BoCesA6, and BoCesA7 mRNAs were present throughout the base and the internode regions of the etiolated shoots that emerged from pseudorhizomes, and in the internode regions of the juvenile branch shoots that emerged from nodes of mature bamboo culms; however, the expression of the four genes in the lignified internode of the branch shoot was predominantly detected in the center of the vascular bundles. Our results for cDNA cloning, expression analyses, and phylogenetic analysis suggest that the 10 BoCesA genes cloned from the etiolated bamboo shoots participate in cellulose synthesis in the primary cell walls of the growing bamboo, and that at least three additional BoCesA genes involved in cellulose synthesis in the secondary walls may be present in the bamboo genome. The expressions of BoCesA genes may be under fine control in response to the various developmental stages and physiological conditions of bamboo.  相似文献   

8.
The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex.  相似文献   

9.
10.
11.
A neuronal NO synthase (NOS1) gene polymorphism is associated with asthma   总被引:2,自引:0,他引:2  
Recent family-based studies have revealed evidence for linkage of chromosomal region 12q to both asthma and high total serum immunoglobulin E (IgE) levels. Among the candidate genes in this region for asthma is neuronal nitric oxide synthase (NOS1). We sought a genetic association between a polymorphism in the NOS1 gene and the diagnosis of asthma, using a case-control design. Frequencies for allele 17 and 18 of a CA repeat in exon 29 of the NOS1 gene were significantly different between 490 asthmatic and 350 control subjects. Allele 17 was more common in the asthmatics (0.83 vs 0.76, or 1.49 [95% CI 1.17-1.90], P = 0.013) while allele 18 was less common in the asthmatics (0.06 vs 0.12, or 0.49 [95% CI 0.34-0. 69], P = 0.0004). To confirm these results we genotyped an additional 1131 control subjects and found the frequencies of alleles 17 and 18 to be virtually identical to those ascertained in our original control subjects. Total serum IgE was not associated with any allele of the polymorphism. These findings provide support, from case-control association analysis, for NOS1 as a candidate gene for asthma.  相似文献   

12.
13.
Streptomyces coelicolor A3(2) is an extensively studied model organism for the genetic studies of Streptomycetes - a genus known for the production of a vast number of bioactive compounds and complex regulatory networks controlling morphological differentiation and secondary metabolites production. We present the discovery of a presumptive product of the Cpk polyketide synthase. We have found that on the rich medium without glucose S. coelicolor A3(2) produces a yellow compound secreted into the medium. We have proved by complementation that production of the observed yellow pigment is dependent on cpk gene cluster previously described as cryptic type I polyketide synthase cluster. The pigment production depends on the medium composition, does not occur in the presence of glucose, and requires high density of spore suspension used for inoculation.  相似文献   

14.
15.
16.
“Brittle culm” mutants found in Gramineae crops are suitable materials to study the mechanism of secondary cell wall formation. Through positional cloning, we have identified a gene responsible for the brittle culm phenotype in rice, brittle culm 3 (bc3). BC3 encodes a member of the classical dynamin protein family, a family known to function widely in membrane dynamics. The bc3 mutation resulted in reductions of 28–36% in cellulose contents in culms, leaves, and roots, while other cell wall components remained unaffected. Reductions of cell wall thickness and birefringence were observed in both fiber (sclerenchyma) and parenchymal cells, together with blurring of the wall’s layered structures. From promoter-GUS analyses, it was suggested that BC3 expression is directly correlated with active secondary cell wall synthesis. These results suggest that BC3 is tightly involved in the synthesis of cellulose and is essential for proper secondary cell wall construction.  相似文献   

17.
18.
Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin homogalacturonan (HG). Although transgenic Arabidopsis seedlings with overexpression, or knock-down, of QUA3 do not show altered phenotypes or changes in pectin methylation, this enzyme is highly expressed and abundant in Arabidopsis suspension-cultured cells. In contrast, in cells subjected to QUA3 RNA interference (RNAi) knock-down there is less pectin methylation as well as altered composition and assembly of cell wall polysaccharides. Taken together, these observations point to a Golgi-localized QUA3 playing an essential role in controlling pectin methylation and cell wall biosynthesis in Arabidopsis suspension cell cultures.  相似文献   

19.
20.
In plants, the division of peroxisomes is mediated by several classes of proteins, including PEROXIN11 (PEX11), FISSION1 (FIS1) and DYNAMIN-RELATED PROTEIN3 (DRP3). DRP3A and DRP3B are two homologous dynamin-related proteins playing overlapping roles in the division of both peroxisomes and mitochondria, with DRP3A performing a stronger function than DRP3B in peroxisomal fission. Here, we report the identification and characterization of the peroxisome division defective 2 (pdd2) mutant, which was later proven to be another drp3A allele. The pdd2 mutant generates a truncated DRP3A protein and exhibits pale green and retarded growth phenotypes. Intriguingly, this mutant displays much stronger peroxisome division deficiency in root cells than in leaf mesophyll cells. Our data suggest that the partial GTPase effector domain retained in pdd2 may have contributed to the distinct mutant phenotype of this mutant.Key words: peroxisome division, dynamin-related protein, arabidopsisIn eukaryotic cells, peroxisomes are surrounded by single membranes and house a variety of oxidative metabolic pathways such as lipid metabolism, detoxification and plant photorespiration.1,2 To accomplish multiple tasks, the morphology, abundance and positioning of peroxisomes need to be highly regulated. Three families of proteins, whose homologs are present across different kingdoms, have been shown to be involved in peroxisome division in Arabidopsis. The PEX11 protein family is composed of five integral membrane proteins with primary roles in peroxisome elongation/tubulation, the initial step in peroxisome division.35 Although the exact function of PEX11s has not been demonstrated, these proteins are believed to participate in peroxisome membrane modification.6,7 The FIS1 family consists of two isoforms, which are C-terminal tail-anchored membrane proteins with rate limiting functions at the fission step.8,9 DRP3A and DRP3B belong to a superfamily of dynamin-related proteins, which are large and self-assembling GTPases involved in the fission and fusion of membranes by acting as mechanochemical enzymes or signaling GTPases.10 The function of PEX11 seems to be exclusive to peroxisomes, whereas DRP3 and FIS1 are shared by the division machineries of both peroxisomes and mitochondria in Arabidopsis.8,9,1116 FIS1 proteins are believed to tether DRP proteins to the peroxisomal membrane,17,18 but direct evidence has not been obtained from plants. DRP3A and DRP3B share 77% sequence identity at the protein level and are functionally redundant in regulating mitochondrial division; however, DRP3A''s role on the peroxisome seems stronger and cannot be substituted by DRP3B in peroxisome division.8,13,15In a continuous effort to identify components of the plant peroxisome division apparatus from Arabidopsis, we performed genetic screens in a peroxisomal marker background expressing the YFP (yellow fluorescent protein)-PTS1 (peroxisome targeting signal 1, containing Ser-Lys-Leu) fusion protein. Mutants with defects in the morphology and abundance of fluorescently labeled peroxisomes are characterized. Following our analysis of the pdd1 mutant, which turned out to be a strong allele of DRP3A,8 we characterized the pdd2 mutant.In root cells of the pdd2 mutant, extremely elongated peroxisomes and a beads-on-a-string peroxisomal phenotype are frequently observed (Fig. 1A and B). These peroxisome phenotypes resemble those of pdd1 and other strong drp3A alleles previously reported.8,15 However, the peroxisome phenotype seems to be less dramatic in leaf mesophyll cells. For instance, in addition to the decreased number of total peroxisomes, peroxisomes in leaf cells are only slightly elongated or exhibit a beads-on-a-string phenotype (Fig. 1C and D). Previously, we reported the phenotypes of three strong drp3A alleles, all of which contain a large number of peroxules, long and thin membrane extensions from the peroxisome,8 yet such peroxisomal structures are not observed in pdd2. On the other hand, pdd2 has a more severe growth phenotype than most drp3A alleles, as it is slow in growth and has pale green leaves (Fig. 1E). Genetic analysis showed that pdd2 segregates as a single recessive mutation (data not shown).Open in a separate windowFigure 1Phenotypic analyses of pdd2 and identification of the PDD2 gene. (A–D) Confocal micrographs of root and mesophyll cells in 3-week-old wild type and pdd2 mutant plants. Green signals show peroxisomes; red signals show chloroplasts. Scale bars = 20 µm. (E) Growth phenotype of 3-week-old mutants. (F) Map-based cloning of the PDD2 gene. Genetic distance from PDD2 is shown under each molecular marker. Positions for mutations in previously analyzed drp3A alleles and pdd2 are indicated in the gene schematic. drp3A-1 and drp3A-2 are T-DNA insertion mutants, whereas pdd1 is an EMS mutant containing a premature stop codon in exon 6. (G) A schematic of the DRP3A (PDD2) protein with functional domains indicated. The pdd2 allele encodes a truncated protein lacking part of the GED domain.The unique combination of peroxisomal and growth phenotypes of pdd2 prompted us to use map-based cloning to identify the PDD2 gene, with the hope to discover novel proteins in the peroxisome division machinery. A population of approximately 6,000 F2 plants (pdd2 × Ler) was generated. After screening 755 F2 mutants, the pdd2 mutation was mapped to the region between markers T10C21 and F4B14 on the long arm of chromosome 4 (Fig. 1F). Since this region contains DRP3A, we sequenced the entire DRP3A gene in pdd2 and identified a G→A transition at the junction of the 18th exon and intron (Fig. 1F). Further analysis revealed that the point mutation at this junction caused mis-splicing of intron 18, introducing a stop codon in the GTPase effector domain GED near the C terminus (Fig. 1G).DRPs share with the classic dynamins an N-terminal GTPase domain, a middle domain (MD), and a regulatory motif named the GTPase effector domain (GED) (Fig. 1G). To date, a total of 26 drp3A mutant alleles carrying missense or nonsense mutations along the length of the DRP3A gene have been isolated.8,15 The combined peroxisomal and growth phenotype of pdd2 and the nature of the mutation in this allele are unique among all the drp3A alleles, indicating that the partial GED domain retained in pdd2 may have created some novel function for this protein. Further analysis of the truncated protein may be necessary to test this prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号