首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

2.
3.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

4.
The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8α-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8α-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the kcat/Km and kcat values were observed as compared with wild-type choline oxidase at pH 10 and 25 °C, with no significant effect on kcat/KO using choline as substrate. Both the kcat/Km and kcat values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both D(kcat/Km) and Dkcat, with average values of 9.2 ± 3.3 and 7.4 ± 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the Dkred values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.A number of enzymes, including dehydrogenases (13), monooxygenases (47), halogenases (811), and oxidases (7, 12, 13), employ flavin cofactors (FAD or FMN) for their catalytic processes. About a tenth of all flavoproteins have been shown to contain a covalently attached cofactor, which may be linked at the C8M position via histidyl, tyrosyl, or cysteinyl side chains or at the C6M position via a cysteinyl side chain (14). Glucooligosaccharide oxidase (15, 16), hexose oxidase (17), and berberine bridge enzyme (18, 19) are examples of flavoproteins (FAD as cofactor) with both linkages present in one flavin molecule. The covalent linkages in flavin-dependent enzymes have been shown to stabilize protein structure (2022), prevent loss of loosely bound flavin cofactors (23), modulate the redox potential of the flavin microenvironment (20, 2327), facilitate electron transfer reactions (28), and contribute to substrate binding as in the case of the cysteinyl linkage (20). However, no study has implicated a mechanistic role of the flavin covalent linkages in enzymatic reactions in which a hydride ion is transferred by quantum mechanical tunneling.The discovery of quantum mechanical tunneling in enzymatic reactions, in which hydrogen atoms, protons, and hydride ions are transferred, has attracted considerable interest in enzyme studies geared toward understanding the mechanisms underlying the several orders of magnitudes in the rate enhancements of protein-catalyzed reactions compared with non-enzymatic ones. Tunneling mechanisms have been shown in a wide array of cofactor-dependent enzymes, including flavoenzymes. Examples of flavoenzymes in which the tunneling mechanisms have been demonstrated include morphinone reductase (29, 30), pentaerythritol tetranitrate reductase (29), glucose oxidase (3133), and choline oxidase (34). Mechanistic data on Class 2 dihydroorotate dehydrogenases, also with a flavin cofactor (FMN) covalently linked to the protein moiety (35, 36), could only propose a mechanism that is either stepwise or concerted with significant quantum mechanical tunneling for the hydride transfer from C6 and the deprotonation at C5 in the oxidation of dihydroorotate to orotate (37). This leaves choline oxidase as the only characterized enzyme with a covalently attached flavin cofactor (12, 38), where the oxidation of its substrate occurs unequivocally by quantum mechanical tunneling.Choline oxidase from Arthrobacter globiformis catalyzes the two-step FAD-dependent oxidation of the primary alcohol substrate choline to glycine betaine with betaine aldehyde, which is predominantly bound to the enzyme and forms a gem-diol species, as intermediate (Scheme 1). Glycine betaine accumulates in the cytoplasm of plants and bacteria as a defensive mechanism against stress conditions, thus making genetic engineering of relevant plants of economic interest (3945), and the biosynthetic pathway for the osmolyte is a potential drug target in human microbial infections of clinical interest (4648). The first oxidation step catalyzed by choline oxidase involves the transfer of a hydride ion from a deprotonated choline to the protein-bound flavin followed by reaction of the anionic flavin hydroquinone with molecular oxygen to regenerate the oxidized FAD (for a recent review see Ref. 50). The gem-diol choline, i.e. hydrated betaine aldehyde, is the substrate for the second oxidation step (49), suggesting that the reaction may follow a similar mechanism. The isoalloxazine ring of the flavin cofactor, which is buried within the protein, is physically constrained through a covalent linkage via the C(8) methyl of the flavin and the N(3) atom of the histidine side chain at position 99 (Fig. 1) (12). Also contributing to the physical constrain are the proximity of Ile-103 to the pyrimidine ring and the interactions of the backbone atoms of residues His-99 through Ile-103 with the isoalloxazine ring. The rigid positioning of the isoalloxazine ring could only permit a solvent-excluded cavity of ∼125 Å3 adjacent to the re face of the FAD to accommodate a 93-Å3 choline molecule in the substrate binding domain (12). Mechanistic data thus far obtained on choline oxidase, coupled with the crystal structure of the wild-type enzyme resolved to 1.86 Å, are consistent with a quantum tunneling mechanism for the hydride ion transfer occurring within a highly preorganized enzyme-substrate complex (Scheme 2) (12, 34, 50). Exploitation of the tunneling mechanism requires minimal independent movement of the hydride ion donor and acceptor, with the only dynamic motions permitted being the ones that promote the hydride transfer reaction.Open in a separate windowSCHEME 1.Two-step, four-electron oxidation of choline catalyzed by choline oxidase.Open in a separate windowFIGURE 1.x-ray crystal structure of the active site of wild-type choline oxidase resolved to 1.86 Å (PDB 2jbv). Note the significant distortion of the flavin ring at the C(4a) atom, which is due to the presence of a C(4a) adduct (69).Open in a separate windowSCHEME 2.The hydride ion transfer reaction from the α-carbon of the activated choline alkoxide species to the N(5) atom of the isoalloxazine ring of the enzyme-bound flavin in choline oxidase.In the present study, the contribution of the physically constrained flavin isoalloxazine ring to the reaction catalyzed by choline oxidase has been investigated in a variant enzyme in which the histidine residue at position 99 was replaced with an asparagine. The results suggest that, although not being required per se, the covalent linkage in choline oxidase contributes to the hydride tunneling reaction by either preventing independent movement or contributing to the optimal positioning of the flavin acting as hydride ion acceptor with respect to the alkoxide species acting as a donor. However, the covalent linkage is not required for the reaction.  相似文献   

5.
6.
7.
8.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

9.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

10.
Cryptochromes and DNA photolyases are related flavoproteins with flavin adenine dinucleotide as the common cofactor. Whereas photolyases repair DNA lesions caused by UV radiation, cryptochromes generally lack repair activity but act as UV-A/blue light photoreceptors. Two distinct electron transfer (ET) pathways have been identified in DNA photolyases. One pathway uses within its catalytic cycle, light-driven electron transfer from FADH* to the DNA lesion and electron back-transfer to semireduced FADHo after photoproduct cleavage. This cyclic ET pathway seems to be unique for the photolyase subfamily. The second ET pathway mediates photoreduction of semireduced or fully oxidized FAD via a triad of aromatic residues that is conserved in photolyases and cryptochromes. The 5,10-methenyltetrahydrofolate (5,10-methenylTHF) antenna cofactor in members of the photolyase family is bleached upon light excitation. This process has been described as photodecomposition of 5,10-methenylTHF. We show that photobleaching of 5,10-methenylTHF in Arabidopsis cry3, a member of the cryptochrome DASH family, with repair activity for cyclobutane pyrimidine dimer lesions in single-stranded DNA and in Escherichia coli photolyase results from reduction of 5,10-methenylTHF to 5,10-methyleneTHF that requires the intact tryptophan triad. Thus, a third ET pathway exists in members of the photolyase family that remained undiscovered so far.DNA photolyases and cryptochromes (cry)2 form a large family of related flavoproteins with DNA repair activity and photoreceptor function, respectively. Members of this protein family were identified in all kingdoms of life and can be grouped in at least nine subclades (1). DNA photolyases repair cytotoxic and mutagenic DNA lesions that are formed during exposure of DNA to UV-B. These DNA lesions are cyclobutane pyrimidine dimers (CPDs) or pyrimidine-pyrimidone (6-4) photoproducts. According to their substrate specificity, DNA photolyases are designated as CPD photolyases or (6-4) photolyases (2). The repair of both types of DNA lesions by photolyase requires the catalytic fully reduced and anionic flavin cofactor FADH that, when photoexcited, injects an electron directly into the DNA lesion (1) as shown in Fig. 1A (electron transfer pathway 1). During extraction from the cell and purification under aerobic conditions the flavin cofactor is usually oxidized to the semireduced and eventually to the fully oxidized form. Reduction of these flavin species to FADH in vitro can be achieved by illumination of the enzyme in the presence of reducing agents such as dithiothreitol or β-mercaptoethanol. This process is named photoactivation (1). Photoactivation in vitro requires photoexcitation of the flavin and a triad of redox-active residues in the protein moiety that is highly conserved in DNA photolyases (3, 4) as shown in Fig. 1A (electron transfer pathway 2). These residues are generally tryptophans that allow transport of an electron from the protein surface to the U-shaped flavin cofactor, which is buried within the C-terminal α-helical domain (59). Whether the same mechanism is used by photolyase to photoreduce FAD in vivo is a matter of debate (10). Photoreduction of the flavin cofactor was also observed in cryptochrome blue/UV-A photoreceptors. However, instead of fully reduced flavin, semireduced flavin species (either anionic flavin semiquinone radical or neutral semiquinone radical) accumulate. This form of the photoreceptor is considered as the signaling state (1114).Open in a separate windowFIGURE 1.Electron transfer pathways in cry3 and structures of folates. A, indicated are the distances of the tryptophans in the tryptophan triad (Trp-356, -409, -432) of Trp-432 to FADH and of FADH to the 5,10-methenylTHF (MTHF) cofactor in cry3. Shown are also the two established routes of electrons from FADH to the DNA lesion (Route 1) and within the tryptophan triad to FAD (Route 2). The third electron transfer pathway from FADH to 5,10-methenylTHF (Route 3) is the subject of this study. B, chemical structures of folates and their molecular masses. Folypolyglutamate molecules have a pteridin and a p-aminobenzoate moiety linked with a glutamate chain with a variable number of glutamic acids. The various THF species differ in their oxidation state of the C1 unit that is attached at the N-5 or N-10 position or form a bridge between both.A recently discovered subclade of the DNA photolyase/cryptochrome family are DASH cryptochromes, which have members in plants, bacteria, and aquatic animals (6, 1517). Because DASH cryptochromes were found to lack repair activity for CPDs in double-stranded DNA, they were considered as cryptochrome-type photoreceptors (6, 16). However, it was recently shown that DASH cryptochromes repair CPDs in single-stranded DNA (18) and loop structures of double-stranded DNA (19) and, thus, belong to the CPD photolyase group. In contrast to conventional CPD photolyases, DASH cryptochromes are unable to flip the CPD lesion out of the DNA duplex (7).Besides the flavin cofactor that is essential for enzymatic activity, DNA photolyases and most likely all cryptochromes contain a second chromophore (1). Like the catalytic flavin, the second chromophore is non-covalently attached to the protein moiety. The majority of DNA photolyases and, as far as studied, the cryptochromes including the DASH-type like cry3 from Arabidopsis thaliana contain polyglutamated 5,10-methenyltetrahydrofolate (5,10-methenylTHF) as the second chromophore (1, 12, 17, 20, 21) (see Fig. 1B for folate structures). Several organisms like the cyanobacterium Anacystis nidulans (Synechococcus elongatus) produce deazariboflavins (7,8-didemethyl-8-hydroxy-5-deazariboflavin) and utilize them as second cofactor (22). In photolyases of thermophilic bacteria and Archaea of the genus Sulfolobus, FMN and FAD, respectively, were found as second cofactors (23, 24). The sole function of the second cofactors demonstrated at present is transfer of excitation energy to the catalytic flavin cofactor via a Förster-type mechanism. The crystal structures of DNA photolyases and DASH cryptochromes revealed that the second chromophores are located in a cleft between the N-terminal α/β domain and the C-terminal α domain (79). The centroid distances between the catalytic FAD and the second chomophore are in the range of 15–18 Å. The close distances and the angles between the transition dipole moments of the two cofactors are favorable for efficient energy transfer. Indeed, energy transfer efficiencies are about 70% for Escherichia coli photolyase (25), close to 100% for A. nidulans photolyase (26), and between 78% (dark-adapted) and 87% (light-adapted) for Arabidopsis cry3 (27). Although the second cofactors are not essential for catalysis (28, 29), they increase the efficiency of repair and possibly of photoactivation by having higher extinction coefficients than FADH in the near UV and blue region (30). The spectral overlap between 5,10-methenylTHF emission and the absorption of the different flavin redox states is on the order FADHo > FADox > FADH (31).Illumination in vitro of photolyase that contains fully oxidized or semireduced flavin results in light-induced absorbance changes. The decrease in absorption in the 450–470-nm region reflects a decrease in the amount of fully oxidized FAD concomitant with transient increase in absorption above 500 nm, which indicates the formation of a neutral semiquinone radical. Excitation of the 5,10-methenylTHF antenna chromophore at its absorption peak at 380 nm causes a likewise photoreduction of the catalytic FAD (1, 27, 28, 30, 31). However, irreversible bleaching of the 380-nm peak is observed under high irradiance UV-A or camera flash illumination (28, 30). This irreversible bleaching goes along with release of the folate cofactor from the protein moiety (30) and was named photodecomposition of 5,10-methenylTHF (28). However, the identity of the formed folate species remained unknown (30). In our previous spectroscopic characterization of Arabidopsis cry3, a similar bleaching of the 380-nm peak was observed (27).Here we show that a third electron transfer pathway exists in photolyase and DASH cryptochome, where the 5,10-methenylTHF cofactor is photoreduced to 5,10-methyleneTHF. Thus, bleaching at 380 nm does not simply reflect destruction but is a specific chemical conversion of the second chromophore.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号