首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

6.
7.
The Ras/B-Raf/C-Raf/MEK/ERK signaling cascade is critical for the control of many fundamental cellular processes, including proliferation, survival, and differentiation. This study demonstrated that small interfering RNA-dependent knockdown of diacylglycerol kinase η (DGKη) impaired the Ras/B-Raf/C-Raf/MEK/ERK pathway activated by epidermal growth factor (EGF) in HeLa cells. Conversely, the overexpression of DGKη1 could activate the Ras/B-Raf/C-Raf/MEK/ERK pathway in a DGK activity-independent manner, suggesting that DGKη serves as a scaffold/adaptor protein. By determining the activity of all the components of the pathway in DGKη-silenced HeLa cells, this study revealed that DGKη activated C-Raf but not B-Raf. Moreover, this study demonstrated that DGKη enhanced EGF-induced heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf. DGKη physically interacted with B-Raf and C-Raf, regulating EGF-induced recruitment of B-Raf and C-Raf from the cytosol to membranes. The DGKη-dependent activation of C-Raf occurred downstream or independently of the already known C-Raf modifications, such as dephosphorylation at Ser-259, phosphorylation at Ser-338, and interaction with 14-3-3 protein. Taken together, the results obtained strongly support that DGKη acts as a novel critical regulatory component of the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade via a previously unidentified mechanism.The Ras/Raf/MEK3/ERK signaling pathway is critical for the transduction of the extracellular signals to the nucleus, regulating diverse physiological processes such as cell proliferation, differentiation, and survival (1, 2). The binding of extracellular ligands, such as growth factors and cytokines, to cell surface receptors activates Ras. The Raf serine/threonine kinase transmits signals from activated Ras to the downstream protein kinases, MEK1 and MEK2, subsequently leading to activation of ERK1 and ERK2.In mammals, the Raf kinase consists of three isoforms, A-Raf, B-Raf, and C-Raf (Raf-1). It is clinically known that both B-Raf and C-Raf mutations are associated with human cancers (35). Knock-out mouse studies demonstrated that each individual Raf isoform has distinct functions, although the three Raf isoforms have high homology in the amino acid sequence (6). The mechanisms underlying C-Raf activation are complicated and thus are not completely understood (3). In response to extracellular signals, C-Raf is initially recruited from cytosol to the plasma membrane and undergo conformational changes by binding directly to the active Ras (7). In addition, other modifications and factors are required for the sufficient activation of C-Raf. For example, dephosphorylation of Ser-259 and phosphorylation of Ser-338, Tyr-341, Thr-491, and Ser-494 are critical for the activation of C-Raf (811). Feedback phosphorylation of C-Raf by ERK was also reported to be important for the modulation of C-Raf activity (12, 13). C-Raf activity is regulated by the interaction with 14-3-3 protein (14). Moreover, the heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf, has been reported to play an essential role in the activation of the MEK-ERK signaling pathway (1517). Although B-Raf and C-Raf are the central regulatory components in the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade involved in a variety of pathophysiological events, the activation mechanisms of C-Raf by B-Raf are still unclear.Diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol to generate phosphatidic acid. DGK has been recently recognized as an emerging key regulator in a wide range of cell signaling systems (1820). To date, 10 mammalian DGK isozymes have been identified. They characteristically contain two or three protein kinase C-like C1 domains and a catalytic region and are subdivided into five subtypes according to their structural features (1820). Their structural variety and distinct expression patterns in tissues allow us to presume that each DGK isozyme has its own biological functions. Indeed, recent studies have revealed that individual DGK isozymes play distinct roles in cell functions through interactions with unique partner proteins such as protein kinase C (21, 22), Ras guanyl nucleotide-releasing protein (23, 24), phosphatidylinositol-4-phosphate 5-kinase (25), chimerins (26, 27), AP-2 (28), and PSD-95 (29).DGKη belongs to the type II DGKs containing a pleckstrin homology domain at the N terminus and the separated catalytic region (19, 30). Two alternative splicing products of DGKη have been identified as DGKη1 and -η2 (31). DGKη2 possesses a sterile α-motif (SAM) domain at the C terminus, whereas DGKη1 does not. This study demonstrated that the expression levels of DGKη1 and -η2 were regulated differently by glucocorticoid, and that they were translocated from the cytoplasm to endosomes in response to stress stimuli as osmotic shock and oxidative stress (31). However, the physiological roles of DGKη remain unknown.This study showed that siRNA-dependent knockdown of DGKη inhibits cell proliferation of the HeLa cells. In addition, DGKη is required for the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade activated by epidermal growth factor (EGF). Intriguingly, DGKη regulates recruitment of B-Raf and C-Raf from cytosol to membranes and their heterodimerization. Moreover, this study demonstrated that DGKη activates C-Raf but not B-Raf in an EGF-dependent manner. The data show DGKη as a novel key regulator of the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway.  相似文献   

8.
9.
10.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

11.
Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which 18O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening.Protein phosphorylation regulates almost all aspects of cell life, such as cell cycle, migration, and apoptosis (1), and deregulation of protein phosphorylation is one of the most frequent causes or consequences of human diseases including cancers, diabetes, and immune disorders (2). Up till now, however, known substrates are far from saturation for the majority of protein kinases (3); thus, mapping comprehensive kinase-substrate relationships is essential to understanding biological mechanisms and uncovering new drug targets (4).Accompanied with advances of high-speed and high-resolution mass spectrometry, the technique of kinase substrate screening using proteomic strategy is quickly evolving (57). Mass spectrometry has been extensively used for kinase-substrate interaction mapping (8) and global phosphorylation profiling (9). Although thousands of phosphorylation sites have been detected, complex phosphorylation cascade and crosstalk between pathways make it difficult for large-scale phosphoproteomics to reveal direct relationships between protein kinases and their substrates (10, 11). Extensive statistics, bioinformatics, and downstream biochemical assays are mandatory for the substrate verification (12, 13). Another strategy uses purified, active kinases to phosphorylate cell extracts in vitro, followed by mass spectrometric analysis to identify phosphoproteins. This approach inevitably faces the major challenge of separating real sites phosphorylated by target kinase and the phosphorylation triggered by endogenous kinases from cell lysates (14). Analog-sensitive kinase allele (15) overcomes the issue by utilizing the engineered kinase that can exclusively take a bulky-ATP analog under the reaction condition. Analog-sensitive kinase allele has been coupled with γ-thiophosphate analog ATP to facilitate the mass spectrometric analysis (1618).We have introduced kinase assay-linked phosphoproteomics (KALIP)1 to link the in vitro substrate identification and physiological phosphorylation events together in a high throughput manner (19, 20). The strategy, however, has only been applied to identify direct substrates of tyrosine kinases. In this study, we expanded the application of KALIP to serine/threonine kinases by introducing a quantitative strategy termed Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics (siKALIP). The method was applied to identify direct substrates of extracellular signal-regulated kinase 1 (ERK1), a serine/threonine kinase acting as an essential component of the Mitogen-activated protein kinase (MAPK) signal transduction pathway (21). A defect in the MAP/ERK pathway causes uncontrolled growth, which likely leads to cancer (22) and other diseases (2325). ERK1 can be activated by growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and nerve growth factor (NGF) (26). Upon stimulation, ERK1 phosphorylates hundreds of substrates in various cellular compartments including cytoplasm, nucleus, and membrane (27). Among 38 ERK1 direct substrates identified by siKALIP, more than one third are previously discovered by classical molecular biology approaches, highlighting high specificity and sensitivity of the strategy. The results also support the hypothesis that ERK1 plays complex roles in multiple pathways that are essential for the cell growth regulation.  相似文献   

12.
13.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

14.
15.
16.
Integrins mediate cell adhesion and motility on the extracellular matrix, yet they also promote viral attachment and/or entry. Evidence is presented that adenovirus internalization by αv integrins requires activation of phosphoinositide-3-OH kinase (PI3K), whereas αv integrin-mediated cell motility depends on the ERK1/ERK2 mitogen-activated protein kinase pathway. Interaction of adenovirus with αv integrins induced activation of PI3K. Pharmacologic or genetic disruption of endogenous PI3K activity blocked adenovirus internalization and virus-mediated gene delivery yet had no effect on integrin-mediated cell adhesion or motility. Therefore, integrin ligation engages distinct signaling pathways that promote viral endocytosis or cell movement.Adenovirus entry into host cells depends on αv integrin binding to the penton base viral coat protein (2, 20, 48). A highly mobile protrusion on the adenovirus penton base contains the arginine-glycine-aspartic acid (RGD) sequence which mediates αv integrin binding (42). Integrins are more noted for their ability to mediate cell surface recognition of the extracellular matrix, thereby facilitating adhesion, migration (24), and cell growth and differentiation (28). These interactions have been associated with cell differentiation and tissue development, angiogenesis, wound repair, cancer, and inflammation (22).A number of cell signaling molecules that are associated with integrin-mediated cellular processes, including adhesion, survival, and motility, have recently been identified (18, 32, 34). For example, the signaling molecule pp125FAK focal adhesion kinase (FAK) (35) is localized to clustered integrins following ligation by extracellular matrix proteins. Engagement (clustering) of integrins by its ligands increases tyrosine phosphorylation and activation of FAK (29). Potential downstream substrates of FAK are the ERK1/ERK2 mitogen-activated protein (MAP) kinases (8, 40) and phosphoinositide-3-OH kinase (PI3K) (7, 17).Recent studies have demonstrated that ligation of αv and β1 integrins by the extracellular matrix leads to engagement of the ERK1/ERK2 MAP kinase pathway (24). Integrin-mediated regulation of the ERK1/ERK2 MAP kinase pathway results in the activation of myosin light chain kinase and subsequently to phosphorylation of myosin light chains. These molecular events culminate in enhanced cell motility. Cell motility, but not cell adhesion or spreading, can be blocked by ERK antisense oligonucleotides or by the compound PD98059, a specific inhibitor of MEK MAP kinase (24), indicating that the ERK1/ERK2 MAP kinase pathway plays a specific role in cell movement.PI3K (44) is another downstream effector of FAK. PI3K is a member of a family of lipid kinases comprised of a p85 regulatory subunit and a p110 catalytic subunit. The p85 subunit of PI3K binds directly to phosphorylated FAK (6). The products of PI3K activation, phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate (PIP3), are increased in the plasma membrane of activated but not quiescent cells and have been proposed to act as second messengers for a number of cell functions (5), including cell cycle progression (9) and cytoskeletal changes underlying the cell plasma membrane (47). PI3K activation also modulates intracellular protein trafficking (41), although a direct role of PI3K in receptor-mediated endocytosis has not been established.While integrins play an important role in adenovirus entry and in cell migration, the precise mechanisms by which these receptors promote these distinct biological functions are not known. In the studies reported here, we demonstrate that a specific signaling event is involved in the cell entry of a human viral pathogen. Evidence is provided that PI3K is activated upon adenovirus interaction with αv integrins and that this event is required for adenovirus internalization. Surprisingly, activation of ERK1/ERK2 following integrin ligation was necessary for cell migration but not for internalization of adenovirus.  相似文献   

17.
Protein kinase A-anchoring proteins (AKAPs) play important roles in the compartmentation of cAMP signaling, anchoring protein kinase A (PKA) to specific cellular organelles and serving as scaffolds that assemble localized signaling cascades. Although AKAPs have been recently shown to bind adenylyl cyclase (AC), the functional significance of this association has not been studied. In cardiac myocytes, the muscle protein kinase A-anchoring protein β (mAKAPβ) coordinates cAMP-dependent, calcium, and MAP kinase pathways and is important for cellular hypertrophy. We now show that mAKAPβ selectively binds type 5 AC in the heart and that mAKAPβ-associated AC activity is absent in AC5 knock-out hearts. Consistent with its known inhibition by PKA phosphorylation, AC5 is inhibited by association with mAKAPβ-PKA complexes. AC5 binds to a unique N-terminal site on mAKAP-(245–340), and expression of this peptide disrupts endogenous mAKAPβ-AC association. Accordingly, disruption of mAKAPβ-AC5 complexes in neonatal cardiac myocytes results in increased cAMP and hypertrophy in the absence of agonist stimulation. Taken together, these results show that the association of AC5 with the mAKAPβ complex is required for the regulation of cAMP second messenger controlling cardiac myocyte hypertrophy.The formation of multimolecular protein complexes contributes to the specificity of intracellular signaling pathways, including those regulating cardiac myocyte hypertrophy. The cAMP-dependent protein kinase (PKA)3 is targeted to specific intracellular domains by protein kinase A-anchoring proteins (AKAPs) that often serve as scaffolding proteins for diverse signaling enzymes (1). In the heart, global disruption of PKA anchoring affects cardiac contractility, while the inhibited expression of individual AKAPs such as mAKAPβ or AKAP-Lbc attenuates adrenergic-induced hypertrophy of cultured neonatal myocytes (24). We have recently shown that specific AKAPs, namely AKAP79 and Yotiao, bind adenylyl cyclases (AC) (5, 6). However, the functional significance of AC-AKAP complexes has not been demonstrated.mAKAPβ, expressed in striated myocytes, is one of two known splice variants encoded by the single mAKAP (AKAP6) gene (7). We previously published that mAKAPβ is primarily localized to the outer membrane of the nuclear envelope via direct binding to nesprin-1α (4, 8). In cardiac myocytes, mAKAPβ serves as the scaffold for a multimolecular signaling complex that in addition to PKA includes the ryanodine receptor (RyR2), the protein phosphatases PP2A and calcineurin, phosphodiesterase 4D3 (PDE4D3), exchange protein activated by cAMP (Epac1), ERK5, and MEK5 mitogen-activated protein kinases, molecules implicated in the regulation of cardiac hypertrophy (4, 713). mAKAPβ complexes facilitate cross-talk between MAP kinase, calcium, and cAMP signaling pathways, permitting feedback inhibition of cAMP levels and the dynamic regulation of PKA and ERK5 activity (4, 913). Accordingly, mAKAPβ RNAi attenuates adrenergic and cytokine-induced hypertrophy of cultured rat neonatal ventricular myocytes (4, 11).Because mAKAPβ forms a complex with two cAMP effectors and a metabolizing enzyme for cAMP, we considered whether AC might also be an integral part of the mAKAPβ complex. We now demonstrate that type 5 adenylyl cyclase (AC5) binds directly a unique N-terminal site on mAKAPβ and is the predominant AC isoform associated with mAKAPβ in the heart. We show that AC5 bound to mAKAPβ is inhibited by PKA-dependent negative feedback. Importantly, inhibition of endogenous mAKAPβ-AC5 binding revealed the functional importance of these complexes for the regulation of cAMP-dependent myocyte hypertrophy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号