首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

6.
7.
8.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

9.
10.
CCN3 (NOV), a putative ligand for integrin receptors, is tightly associated with the extracellular matrix and mediates diverse cellular functions, including cell adhesion and proliferation. CCN3 has been shown to negatively regulate growth although it promotes migration in a cell type-specific manner. In this study, overexpression of CCN3 reduces growth and increases intercellular adhesion of breast cancer cells. Interestingly, CCN3 overexpression also led to the formation of multiple pseudopodia that are enriched in actin, CCN3, and vinculin. Breast cancer cells preincubated with exogenous CCN3 protein also induced the same phenotype, indicating that secreted CCN3 is sufficient to induce changes in cell morphology. Surprisingly, extracellular CCN3 is internalized to the early endosomes but not to the membrane protrusions, suggesting pseudopodia-enriched CCN3 may derive from a different source. The presence of an intracellular variant of CCN3 will be consistent with our finding that the cytoplasmic tail of the gap junction protein connexin43 (Cx43) associates with CCN3. Cx43 is a channel protein permitting intercellular communication to occur. However, neither the channel properties nor the protein levels of Cx43 are affected by the CCN3 protein. In contrast, CCN3 proteins are down-regulated in the absence of Cx43. Finally, we showed that overexpression of CCN3 increases the activity of the small GTPase Rac1, thereby revealing a pathway that links Cx43 directly to actin reorganization.The CCN (CYR61/Connective Tissue Growth Factor/Nephroblastoma Overexpressed) family of multimodular proteins mediates diverse cellular functions, including cell adhesion, migration, and proliferation (13). Overexpression of CCN3, one of the founding members of the family, inhibits proliferation in most types of tumors such as glioblastoma and Ewing sarcoma (4, 5). Similarly, down-regulation of CCN3 has been suggested to promote melanoma progression (6). On the other hand, CCN3 can also promote migration in sarcoma and glioblastoma (4, 7), although a separate study shows that it decreases the invasion of melanoma (6). Therefore, in contrast to its role in growth suppression, the role of CCN3 signaling in cell motility is less clear.Most evidence suggests CCN3 mediates its effects by binding to the integrin proteins, such as the αVβ3 receptors (8, 9), and that CCN3 alters cell adhesion in an integrin-dependent fashion (4, 10). In melanocytes, the discoidin domain receptor 1 mediates CCN3-dependent adhesion (11). CCN3 has also been observed to associate with Notch1 (12), fibulin 1C (13), S100A4 (14), and the gap junction protein Cx433 (15, 16), suggesting that CCN3 may also modulate cell growth via non-integrin signaling pathways.Gap junction proteins are best known for forming channels between cells, contributing to intercellular communication by allowing the exchange of small ions and molecules (17, 18). Consequently, attenuated intercellular communication has been implicated in promoting carcinogenesis (19, 20). Recent evidence has indicated that connexins can mediate channel-independent growth control through interaction of their C-terminal cytoplasmic tail with various intracellular signaling molecules (2123). In addition, many Cx43-interacting proteins, including ZO-1 (zonula occludens-1) (24), Drebrin (25), and N-cadherin (26) associate with F-actin, thus placing Cx43 in close proximity to the actin cytoskeleton.In this study, we show for the first time that CCN3 reorganizes the actin cytoskeleton of the breast cancer cells MDA-MB-231 with the formation of multiple cell protrusions, possibly by activating the small GTPase Rac1. Our results also suggest an alternative route by which Cx43 may be functionally linked to actin cytoskeletal signaling via CCN3.  相似文献   

11.
Matrix metalloproteinases (MMPs) have been extensively studied because of their functional attributes in development and diseases. However, relatively few in vivo functional studies have been reported on the roles of MMPs in postembryonic organ development. Amphibian metamorphosis is a unique model for studying MMP function during vertebrate development because of its dependence on thyroid hormone (T3) and the ability to easily manipulate this process with exogenous T3. The MMP stromelysin-3 (ST3) is induced by T3, and its expression correlates with cell death during metamorphosis. We have previously shown that ST3 is both necessary and sufficient for larval epithelial cell death in the remodeling intestine. To investigate the roles of ST3 in other organs and especially on different cell types, we have analyzed the effect of transgenic overexpression of ST3 in the tail of premetamorphic tadpoles. We report for the first time that ST3 expression, in the absence of T3, caused significant muscle cell death in the tail of premetamorphic transgenic tadpoles. On the other hand, only relatively low levels of epidermal cell death were induced by precocious ST3 expression in the tail, contrasting what takes place during natural and T3-induced metamorphosis when ST3 expression is high. This cell type-specific apoptotic response to ST3 in the tail suggests distinct mechanisms regulating cell death in different tissues. Furthermore, our analyses of laminin receptor, an in vivo substrate of ST3 in the intestine, suggest that laminin receptor cleavage may be an underlying mechanism for the cell type-specific effects of ST3.The extracellular matrix (ECM),3 the dynamic milieu of the cell microenvironment, plays a critical role in dictating the fate of the cell. The cross-talk between the cell and ECM and the timely catabolism of the ECM are crucial for tissue remodeling during development (1). Matrix metalloproteinases (MMPs), extrinsic proteolytic regulators of the ECM, mediate this process to a large extent. MMPs are a large family of Zn2+-dependent endopeptidases potentially capable of cleaving the extracellular as well as nonextracellular proteins (29). The MMP superfamily includes collagenases, gelatinases, stromelysins, and membrane-type MMPs based on substrate specificity and domain organization (24). MMPs have been implicated to influence a wide range of physiological and pathological processes (1013). The roles of MMPs appear to be very complex. For example, MMPs have been suggested to play roles in both tumor promotion and suppression (1319). Unfortunately, relatively few functional studies have been carried out in vivo, especially in relation to the mechanisms involved during vertebrate development.Amphibian metamorphosis presents a fascinating experimental model to study MMP function during postembryonic development. A unique and salient feature of the metamorphic process is the absolute dependence on the signaling of thyroid hormone (2023). This makes it possible to prevent metamorphosis by simply inhibiting the synthesis of endogenous T3 or to induce precocious metamorphosis by merely adding physiological levels of T3 in the rearing water of premetamorphic tadpoles. Gene expression screens have identified the MMP stromelysin-3 (ST3) as a direct T3 response gene (2427). Expression studies have revealed a distinct spatial and temporal ST3 expression profile in correlation with metamorphic event, especially cell death (25, 2831). Organ culture studies on intestinal remodeling have directly substantiated an essential role of ST3 in larval epithelial cell death and ECM remodeling (32). Furthermore, precocious expression of ST3 alone in premetamorphic tadpoles through transgenesis is sufficient to induce ECM remodeling and larval epithelial apoptosis in the tadpole intestine (33). Thus, ST3 appears to be necessary and sufficient for intestinal epithelial cell death during metamorphosis.ST3 was first isolated as a breast cancer-associated gene (34), and unlike most other MMPs, ST3 is secreted as an active protease through a furin-dependent intracellular activation mechanism (35). Like many other MMPs, ST3 is expressed in a number of pathological processes, including most human carcinomas (11, 3640), as well as in many developmental processes in mammals (10, 34, 4143), although the physiological and pathological roles of ST3 in vivo are largely unknown in mammals. Interestingly, compared with other MMPs, ST3 has only weak activities toward ECM proteins in vitro but stronger activities against non-ECM proteins like α1 proteinase inhibitor and IGFBP-1 (4446). Although ST3 may cleave ECM proteins strongly in the in vivo environment, these findings suggest that the cleavage of non-ECM proteins is likely important for its biological roles. Consistently, we have recently identified a cell surface receptor, laminin receptor (LR) as an in vivo substrate of ST3 in the tadpole intestine during metamorphosis (4749). Analyses of LR expression and cleavage suggest that LR cleavage by ST3 is likely an important mechanism by which ST3 regulates the interaction between the larval epithelial cells and the ECM to induce cell death during intestinal remodeling (47, 48).Here, to investigate the role of ST3 in the apoptosis in other tissues during metamorphosis and whether LR cleavage serves as a mechanism for ST3 to regulate the fate of different cell types, we have analyzed the effects of precocious expression of ST3 in premetamorphic tadpole tail. The tail offers an opportunity to examine the effects of ST3 on different cell types. The epidermis, the fast and slow muscles, and the connective tissue underlying the epidermis in the myotendinous junctions and surrounding the notochord constitute the major tissue types in tail (50). Even though death is the destiny of all these cell types, it is not clear whether they all die through similar or different mechanisms. Microscopic and histochemical analyses have shown that at least the muscle and epidermal cells undergo T3-dependent apoptosis during metamorphosis (23, 29, 51, 52). To study whether ST3 regulates apoptosis of these two cell types, we have made use of the transgenic animals that express a transgenic ST3 under the control of a heat shock-inducible promoter (33). We show that whereas extensive apoptosis is present in both the epidermis and muscles during natural as well as T3-induced metamorphosis, transgenic expression of ST3 induces cell death predominantly in the muscles. Furthermore, we show that LR is expressed in the epidermis and connective tissue but not in muscles of the tadpole tail. More importantly, LR cleavage products are present in the tail during natural metamorphosis but not in transgenic tadpoles overexpressing ST3. These results suggest that ST3 has distinct effects on the epidermis and muscles in the tail, possibly because of the tissue-specific expression and function of LR.  相似文献   

12.
A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways.Neuropeptides and hormones comprise a diverse class of signaling molecules involved in numerous essential physiological processes, including analgesia, reward, food intake, learning and memory (1). Disorders of the neurosecretory and neuroendocrine systems influence many pathological processes. For example, obesity results from failure of energy homeostasis in association with endocrine alterations (2, 3). Previous work from our lab used crustaceans as model organisms found that multiple neuropeptides were implicated in control of food intake, including RFamides, tachykinin related peptides, RYamides, and pyrokinins (46).Crustacean hyperglycemic hormone (CHH)1 family neuropeptides play a central role in energy homeostasis of crustaceans (717). Hyperglycemic response of the CHHs was first reported after injection of crude eyestalk extract in crustaceans. Based on their preprohormone organization, the CHH family can be grouped into two sub-families: subfamily-I containing CHH, and subfamily-II containing molt-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). The preprohormones of the subfamily-I have a CHH precursor related peptide (CPRP) that is cleaved off during processing; and preprohormones of the subfamily-II lack the CPRP (9). Uncovering their physiological functions will provide new insights into neuroendocrine regulation of energy homeostasis.Characterization of CHH-family neuropeptides is challenging. They are comprised of more than 70 amino acids and often contain multiple post-translational modifications (PTMs) and complex disulfide bridge connections (7). In addition, physiological concentrations of these peptide hormones are typically below picomolar level, and most crustacean species do not have available genome and proteome databases to assist MS-based sequencing.MS-based neuropeptidomics provides a powerful tool for rapid discovery and analysis of a large number of endogenous peptides from the brain and the central nervous system. Our group and others have greatly expanded the peptidomes of many model organisms (3, 1833). For example, we have discovered more than 200 neuropeptides with several neuropeptide families consisting of as many as 20–40 members in a simple crustacean model system (5, 6, 2531, 34). However, a majority of these neuropeptides are small peptides with 5–15 amino acid residues long, leaving a gap of identifying larger signaling peptides from organisms without sequenced genome. The observed lack of larger size peptide hormones can be attributed to the lack of effective de novo sequencing strategies for neuropeptides larger than 4 kDa, which are inherently more difficult to fragment using conventional techniques (3437). Although classical proteomics studies examine larger proteins, these tools are limited to identification based on database searching with one or more peptides matching without complete amino acid sequence coverage (36, 38).Large populations of neuropeptides from 4–10 kDa exist in the nervous systems of both vertebrates and invertebrates (9, 39, 40). Understanding their functional roles requires sufficient molecular knowledge and a unique analytical approach. Therefore, developing effective and reliable methods for de novo sequencing of large neuropeptides at the individual amino acid residue level is an urgent gap to fill in neurobiology. In this study, we present a multifaceted MS strategy aimed at high-definition de novo sequencing and comprehensive characterization of the CHH-family neuropeptides in crustacean central nervous system. The high-definition de novo sequencing was achieved by a combination of three methods: (1) enzymatic digestion and LC-tandem mass spectrometry (MS/MS) bottom-up analysis to generate detailed sequences of proteolytic peptides; (2) off-line LC fractionation and subsequent top-down MS/MS to obtain high-quality fragmentation maps of intact peptides; and (3) on-line LC coupled to top-down MS/MS to allow rapid sequence analysis of low abundance peptides. Combining the three methods overcomes the limitations of each, and thus offers complementary and high-confidence determination of amino acid residues. We report the complete sequence analysis of six CHH-family neuropeptides including the discovery of two novel peptides. With the accurate molecular information, MALDI imaging and ion mobility MS were conducted for the first time to explore their anatomical distribution and biochemical properties.  相似文献   

13.
During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP1) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration.The quality of bone tissue is determined by the balanced action of the anabolic bone cells, the osteoblasts, and their catabolic counterparts, the osteoclasts. This process of bone remodeling occurs throughout life and can be influenced by a wide variety of molecules, having ultimately an impact on the quality of bone (1, 2). Activins and inhibins are members of the TGF-β superfamily with predominant antagonistic effects in their classically known target tissues, such as in gonadotropin producing cells in the pituitary and their role in reproduction (3, 4). Like other TGF-β member, activins elicit biological responses by binding to type I and II serine/threonine kinase receptors at the cell surface. Upon ligand binding, signaling is further transduced in the cytoplasm by phosphorylated Smad protein complexes that once in the nucleus regulate gene expression. This signaling pathway is highly complex because of crosstalk between different ligands (Activins, BMPs, TGF-β) binding to multiple serine/threonine kinase receptors that activate different Smad proteins signaling to the nucleus. Activin is known to signal using type II receptors ACVR2A or ACVR2B and the type I receptor ACVRIB (shared with BMPs) activating Smad2 and 3 proteins (shared with TGF-β). Inhibins exert their inhibitory effects on activin by competitive binding to the activin receptors in the presence of betaglycan. This signaling regulates a wide array of biological activities from cell proliferation, differentiation to tumor development and endocrine signaling (5, 6) in many cell lineages like hematopoietic (7, 8) and monocyte/macrophage (9, 10). Several consequences of these reproductive hormones, especially those of activin A, are also described in relation to bone metabolism. Activin A is present in bone tissue (11, 12) affecting both osteoclasts and osteoblasts. While having a consistent pro-osteoclastogenic effect (9, 13), the activin A impact on osteoblast differentiation is more controversial (see (14) for review) Several reports support a stimulatory effect of activin A on osteoblast differentiation and mineralization in vitro and in vivo (9, 15, 16). On the other hand, two different studies, using rat and human bone formation models, have demonstrated that activin A treatment has a coherent inhibitory influence on osteogenesis leading to significant reduction of the mineralization capacity (11, 17). These opposing effects of activin A on osteoblastogenesis may simply reflect species differences, however, it may be also driven by heterogeneity of the used cell model or the stage of osteoblast differentiation (14). Nevertheless, a negative role of activin A in bone formation is also supported by other in vivo studies in mice and primates in which blockage of activin signaling resulted in increased bone mass (18, 19). Moreover, transgenic mice overexpressing human inhibin A showed increased bone formation (20).The extracellular compartment is crucial for bone because it determines most of the bone quality properties (21, 22), including its strength, stability, and integrity. Interestingly, a mature extracellular matrix (ECM) is characterized by the capacity to mineralize even in the absence of further osteoblast activity (11, 23). This biomineralization process is complex and not fully elucidated but it is thought to be started within MVs (24). Osteoblasts in bone and other cells in mineralization competent tissues, such as cartilage (25), tendon (26), teeth (27), and calcifying vasculature (28) produce and release from their plasma membrane these vesicles with diameters ranging between 50 and 200 nm. It is inside these membrane-enclosed particles that first crystals of mineral are formed and grow, before the vesicle membrane is permeated and the mineral crystallization advances into the ECM (29, 30). In this context, proteins that can mobilize calcium and inorganic phosphate (Pi), the backbone of the hydroxyapatite crystals present in bone, are of utmost importance. Pi donor proteins found in MVs include alkaline phosphatase (ALP) and inorganic pyrophosphatases (31) whereas the annexin family of proteins is postulated to be crucial for calcium influx into the vesicles (3234).In this study we investigated the inhibitory effect of activin A on human mesenchymal stem cells (hMSC) derived osteoblast differentiation and mineralization. We have previously shown that in human osteoblast cultures activin A influences the expression of many ECM genes altering ECM maturity (11). Thus, we focused our analysis on extracellular environment changes, namely the ECM and matrix vesicles (MVs). The characterization of these compartments was done using the state-of-the-art quantitative proteomics tools including SILAC metabolic labeling and mass spectrometry. Furthermore, the importance of ECM composition for osteoblast differentiation was also determined.  相似文献   

14.
15.
Glycosylation is one of the most common and important protein modifications in biological systems. Many glycoproteins naturally occur at low abundances, which makes comprehensive analysis extremely difficult. Additionally, glycans are highly heterogeneous, which further complicates analysis in complex samples. Lectin enrichment has been commonly used, but each lectin is inherently specific to one or several carbohydrates, and thus no single or collection of lectin(s) can bind to all glycans. Here we have employed a boronic acid-based chemical method to universally enrich glycopeptides. The reaction between boronic acids and sugars has been extensively investigated, and it is well known that the interaction between boronic acid and diols is one of the strongest reversible covalent bond interactions in an aqueous environment. This strong covalent interaction provides a great opportunity to catch glycopeptides and glycoproteins by boronic acid, whereas the reversible property allows their release without side effects. More importantly, the boronic acid-diol recognition is universal, which provides great capability and potential for comprehensively mapping glycosylation sites in complex biological samples. By combining boronic acid enrichment with PNGase F treatment in heavy-oxygen water and MS, we have identified 816 N-glycosylation sites in 332 yeast proteins, among which 675 sites were well-localized with greater than 99% confidence. The results demonstrated that the boronic acid-based chemical method can effectively enrich glycopeptides for comprehensive analysis of protein glycosylation. A general trend seen within the large data set was that there were fewer glycosylation sites toward the C termini of proteins. Of the 332 glycoproteins identified in yeast, 194 were membrane proteins. Many proteins get glycosylated in the high-mannose N-glycan biosynthetic and GPI anchor biosynthetic pathways. Compared with lectin enrichment, the current method is more cost-efficient, generic, and effective. This method can be extensively applied to different complex samples for the comprehensive analysis of protein glycosylation.Glycosylation is an extremely important protein modification that frequently regulates protein folding, trafficking, and stability. It is also involved in a wide range of cellular events (1) such as immune response (2, 3), cell proliferation (4), cell-cell interactions (5), and signal transduction (6). Aberrant protein glycosylation is believed to have a direct correlation with the development of several diseases, including diabetes, infectious diseases, and cancer (711). Secretory proteins frequently get glycosylated, including those in body fluids such as blood, saliva, and urine (12, 13). Samples containing these proteins can be easily obtained and used for diagnostic and therapeutic purposes. Several glycoproteins have previously been identified as biomarkers, including Her2/Neu in breast cancer (14), prostate-specific antigen (PSA) in prostate cancer (15), and CA125 in ovarian cancer (16, 17), which highlights the clinical importance of identifying glycoproteins as indicators or biomarkers of diseases. Therefore, effective methods for systematic analysis of protein glycosylation are essential to understand the mechanisms of glycobiology, identify drug targets and discover biomarkers.Approximately half of mammalian cell proteins are estimated to be glycosylated at any given time (18). There have been many reports regarding identification of protein glycosylation sites and elucidation of glycan structures (1930). Glycan structure analysis can lead to potential therapeutic and diagnostic applications (31, 32), but it is also critical to identify which proteins are glycosylated as well as the sites at which the modification occurs. Despite progress in recent years, the large-scale analysis of protein glycosylation sites using MS-based proteomics methods is still a challenge. Without an effective enrichment method, the low abundance of glycoproteins prohibits the identification of the majority of sites using the popular intensity-dependent MS sequence method.About a decade ago, a very beautiful and elegant method based on hydrazide chemistry was developed to enrich glycopeptides. Hydrazide conjugated beads reacted with aldehydes formed from the oxidation of cis-diols in glycans (33). This method has been extensively applied to many different types of biological samples (3441). Besides the hydrazide-based enrichment method, lectins have also been frequently used to enrich glycopeptides or glycoproteins before MS analysis (28, 29, 4246). However, there are many different types of lectins, and each is specific to certain glycans (47, 48). Therefore, no combination of lectins can bind to all glycosylated peptides or proteins, which prevents comprehensive analysis of protein glycosylation. Because of the complexity of biological samples, effective enrichment methods are critical for the comprehensive analysis of protein glycosylation before MS analysis.One common feature of all glycoproteins and glycopeptides is that they contain multiple hydroxyl groups in their glycans. From a chemistry point of view, this can be exploited to effectively enrich them. Ideally, chemical enrichment probes must have both strong and specific interactions with multiple hydroxyl groups. The reaction between boronic acids and 1,2- or 1,3-cis-diols in sugars has been extensively studied (4952) and applied for the small-scale analysis of glycoproteins (5355). Furthermore, boronate affinity chromatography has been employed for the analysis of nonenzymatically glycated peptides (56, 57). Boronic acid-based chemical enrichment methods are expected to have great potential for global analysis of glycopeptides when combined with modern MS-based proteomics techniques. However, the method has not yet been used for the comprehensive analysis of protein N-glycosylation in complex biological samples (58).Yeast is an excellent model biological system that has been extensively used in a wide range of experiments. Last year, two papers reported the large-scale analysis of protein N-glycosylation in yeast (59, 60). In one study, a new MS-based method was developed based on N-glycopeptide mass envelopes with a pattern via metabolic incorporation of a defined mixture of N-acetylglucosamine isotopologs into N-glycans. Peptides with the recoded envelopes were specifically targeted for fragmentation, facilitating high confidence site mapping (59). Using this method, 133 N-glycosylation sites were confidently identified in 58 yeast proteins. When combined with an effective enrichment method, this MS-based analysis will provide a more complete coverage of the N-glycoproteome. The other work combined lectin enrichment with digestion by two enzymes (Glu_c and trypsin) to increase the peptide coverage, and 516 well-localized N-glycosylation sites were identified in 214 yeast proteins by MS (60).Here we have comprehensively identified protein N-glycosylation sites in yeast by combining a boronic acid-based chemical enrichment method with MS-based proteomics techniques. Magnetic beads conjugated with boronic acid were systematically optimized to selectively enrich glycosylated peptides from yeast whole cell lysates. The enriched peptides were subsequently treated with Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F)1 in heavy-oxygen water. Finally, peptides were analyzed by an on-line LC-MS system. Over 800 protein N-glycosylation sites were identified in the yeast proteome, which clearly demonstrates that the boronic acid-based chemical method is an effective enrichment method for large-scale analysis of protein glycosylation by MS.  相似文献   

16.
17.
Most human genes undergo alternative splicing, but aberrant splice forms are hallmarks of many cancers, usually resulting from mutations initiating abnormal exon skipping, intron retention, or the introduction of a new splice sites. We have identified a family of aberrant splice variants of HAS1 (the hyaluronan synthase 1 gene) in some B lineage cancers, characterized by exon skipping and/or partial intron retention events that occur either together or independently in different variants, apparently due to accumulation of inherited and acquired mutations. Cellular, biochemical, and oncogenic properties of full-length HAS1 (HAS1-FL) and HAS1 splice variants Va, Vb, and Vc (HAS1-Vs) are compared and characterized. When co-expressed, the properties of HAS1-Vs are dominant over those of HAS1-FL. HAS1-FL appears to be diffusely expressed in the cell, but HAS1-Vs are concentrated in the cytoplasm and/or Golgi apparatus. HAS1-Vs synthesize detectable de novo HA intracellularly. Each of the HAS1-Vs is able to relocalize HAS1-FL protein from diffuse cytoskeleton-anchored locations to deeper cytoplasmic spaces. This HAS1-Vs-mediated relocalization occurs through strong molecular interactions, which also serve to protect HAS1-FL from its otherwise high turnover kinetics. In co-transfected cells, HAS1-FL and HAS1-Vs interact with themselves and with each other to form heteromeric multiprotein assemblies. HAS1-Vc was found to be transforming in vitro and tumorigenic in vivo when introduced as a single oncogene to untransformed cells. The altered distribution and half-life of HAS1-FL, coupled with the characteristics of the HAS1-Vs suggest possible mechanisms whereby the aberrant splicing observed in human cancer may contribute to oncogenesis and disease progression.About 70–80% of human genes undergo alternative splicing, contributing to proteomic diversity and regulatory complexities in normal development (1). About 10% of mutations listed so far in the Human Gene Mutation Database (HGMD) of “gene lesions responsible for human inherited disease” were found to be located within splice sites. Furthermore, it is becoming increasingly apparent that aberrant splice variants, generated mostly due to splicing defects, play a key role in cancer. Germ line or acquired genomic changes (mutations) in/around splicing elements (24) promote aberrant splicing and aberrant protein isoforms.Hyaluronan (HA)3 is synthesized by three different plasma membrane-bound hyaluronan synthases (1, 2, and 3). HAS1 undergoes alternative and aberrant intronic splicing in multiple myeloma, producing truncated variants termed Va, Vb, and Vc (5, 6), which predicted for poor survival in a cohort of multiple myeloma patients (5). Our work suggests that this aberrant splicing arises due to inherited predispositions and acquired mutations in the HAS1 gene (7). Cancer-related, defective mRNA splicing caused by polymorphisms and/or mutations in splicing elements often results in inactivation of tumor suppressor activity (e.g. HRPT2 (8, 9), PTEN (10), MLHI (1114), and ATR (15)) or generation of dominant negative inhibitors (e.g. CHEK2 (16) and VWOX (17)). In breast cancer, aberrantly spliced forms of progesterone and estrogen receptors are found (reviewed in Ref. 3). Intronic mutations inactivate p53 through aberrant splicing and intron retention (18). Somatic mutations with the potential to alter splicing are frequent in some cancers (1925). Single nucleotide polymorphisms in the cyclin D1 proto-oncogene predispose to aberrant splicing and the cyclin D1b intronic splice variant (2629). Cyclin D1b confers anchorage independence, is tumorogenic in vivo, and is detectable in human tumors (30), but as yet no clinical studies have confirmed an impact on outcome. On the other hand, aberrant splicing of HAS1 shows an association between aberrant splice variants and malignancy, suggesting that such variants may be potential therapeutic targets and diagnostic indicators (19, 3133). Increased HA expression has been associated with malignant progression of multiple tumor types, including breast, prostate, colon, glioma, mesothelioma, and multiple myeloma (34). The three mammalian HA synthase (HAS) isoenzymes synthesize HA and are integral transmembrane proteins with a probable porelike structural assembly (3539). Although in humans, the three HAS genes are located on different chromosomes (hCh19, hCh8, and hCh16, respectively) (40), they share a high degree of sequence homology (41, 42). HAS isoenzymes synthesize a different size range of HA molecules, which exhibit different functions (43, 44). HASs contribute to a variety of cancers (4555). Overexpression of HASs promotes growth and/or metastatic development in fibrosarcoma, prostate, and mammary carcinoma, and the removal of the HA matrix from a migratory cell membrane inhibits cell movement (45, 53). HAS2 confers anchorage independence (56). Our work has shown aberrant HAS1 splicing in multiple myeloma (5) and Waldenstrom''s macroglobulinemia (6). HAS1 is overexpressed in colon (57), ovarian (58), endometrial (59), mesothelioma (60), and bladder cancers (61). A HAS1 splice variant is detected in bladder cancer (61).Here, we characterize molecular and biochemical characteristics of HAS1 variants (HAS1-Vs) (5), generated by aberrant splicing. Using transient transfectants and tagged HAS1 family constructs, we show that HAS1-Vs differ in cellular localization, de novo HA localization, and turnover kinetics, as compared with HAS1-FL, and dominantly influence HAS1-FL when co-expressed. HAS1-Vs proteins form intra- and intermolecular associations among themselves and with HAS1-FL, including covalent interactions and multimer formation. HAS1-Vc supports vigorous cellular transformation of NIH3T3 cells in vitro, and HAS1-Vc-transformed NIH3T3 cells are tumorogenic in vivo.  相似文献   

18.
Given the ease of whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now purely based on automated prediction. However, errors in gene structure are frequent, the correct determination of start codons being one of the main concerns. Here, we combine protein N termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP Ac-OSu) as a labeling reagent with the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting method to enrich labeled N-terminal peptides for mass spectrometry detection. Protein digestion was performed in parallel with three proteases to obtain a reliable automatic validation of protein N termini. The analysis of these N-terminal enriched fractions by high-resolution tandem mass spectrometry allowed the annotation refinement of 534 proteins of the model marine bacterium Roseobacter denitrificans OCh114. This study is especially efficient regarding mass spectrometry analytical time. From the 534 validated N termini, 480 confirmed existing gene annotations, 41 highlighted erroneous start codon annotations, five revealed totally new mis-annotated genes; the mass spectrometry data also suggested the existence of multiple start sites for eight different genes, a result that challenges the current view of protein translation initiation. Finally, we identified several proteins for which classical genome homology-driven annotation was inconsistent, questioning the validity of automatic annotation pipelines and emphasizing the need for complementary proteomic data. All data have been deposited to the ProteomeXchange with identifier PXD000337.Recent developments in mass spectrometry and bioinformatics have established proteomics as a common and powerful technique for identifying and quantifying proteins at a very broad scale, but also for characterizing their post-translational modifications and interaction networks (1, 2). In addition to the avalanche of proteomic data currently being reported, many genome sequences are established using next-generation sequencing, fostering proteomic investigations of new cellular models. Proteogenomics is a relatively recent field in which high-throughput proteomic data is used to verify coding regions within model genomes to refine the annotation of their sequences (28). Because genome annotation is now fully automated, the need for accurate annotation for model organisms with experimental data is crucial. Many projects related to genome re-annotation of microorganisms with the help of proteomics have been recently reported, such as for Mycoplasma pneumoniae (9), Rhodopseudomonas palustris (10), Shewanella oneidensis (11), Thermococcus gammatolerans (12), Deinococcus deserti (13), Salmonella thyphimurium (14), Mycobacterium tuberculosis (15, 16), Shigella flexneri (17), Ruegeria pomeroyi (18), and Candida glabrata (19), as well as for higher organisms such as Anopheles gambiae (20) and Arabidopsis thaliana (4, 5).The most frequently reported problem in automatic annotation systems is the correct identification of the translational start codon (2123). The error rate depends on the primary annotation system, but also on the organism, as reported for Halobacterium salinarum and Natromonas pharaonis (24), Deinococcus deserti (21), and Ruegeria pomeroyi (18), where the error rate is estimated above 10%. Identification of a correct translational start site is essential for the genetic and biochemical analysis of a protein because errors can seriously impact subsequent biological studies. If the N terminus is not correctly identified, the protein will be considered in either a truncated or extended form, leading to errors in bioinformatic analyses (e.g. during the prediction of its molecular weight, isoelectric point, cellular localization) and major difficulties during its experimental characterization. For example, a truncated protein may be heterologously produced as an unfolded polypeptide recalcitrant to structure determination (25). Moreover, N-terminal modifications, which are poorly documented in annotation databases, may occur (26, 27).Unfortunately, the poor polypeptide sequence coverage obtained for the numerous low abundance proteins in current shotgun MS/MS proteomic studies implies that the overall detection of N-terminal peptides obtained in proteogenomic studies is relatively low. Different methods for establishing the most extensive list of protein N termini, grouped under the so-called “N-terminomics” theme, have been proposed to selectively enrich or improve the detection of these peptides (2, 28, 29). Large N-terminome studies have recently been reported based on resin-assisted enrichment of N-terminal peptides (30) or terminal amine isotopic labeling of substrates (TAILS) coupled to depletion of internal peptides with a water-soluble aldehyde-functionalized polymer (3135). Among the numerous N-terminal-oriented methods (2), specific labeling of the N terminus of intact proteins with N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinamide (TMPP-Ac-OSu)1 has proven reliable (21, 3639). TMPP-derivatized N-terminal peptides have interesting properties for further LC-MS/MS mass spectrometry: (1) an increase in hydrophobicity because of the trimethoxyphenyl moiety added to the peptides, increasing their retention times in reverse phase chromatography, (2) improvement of their ionization because of the introduction of a positively charged group, and (3) a much simpler fragmentation pattern in tandem mass spectrometry. Other reported approaches rely on acetylation, followed by trypsin digestion, and then biotinylation of free amino groups (40); guanidination of lysine lateral chains followed by N-biotinylation of the N termini and trypsin digestion (41); or reductive amination of all free amino groups with formaldehyde preceeding trypsin digestion (42). Recently, we applied the TMPP method to the proteome of the Deinococcus deserti bacterium isolated from upper sand layers of the Sahara desert (13). This method enabled the detection of N-terminal peptides allowing the confirmation of 278 translation initiation codons, the correction of 73 translation starts, and the identification of non-canonical translation initiation codons (21). However, most TMPP-labeled N-terminal peptides are hidden among the more abundant internal peptides generated after proteolysis of a complex proteome, precluding their detection. This results in disproportionately fewer N-terminal validations, that is, 5 and 8% of total polypeptides coded in the theoretical proteomes of Mycobacterium smegmatis (37) and Deinococcus deserti (21) with a total of 342 and 278 validations, respectively.An interesting chromatographic method to fractionate peptide mixtures for gel-free high-throughput proteome analysis has been developed over the last years and applied to various topics (43, 44). This technique, known as COmbined FRActional DIagonal Chromatography (COFRADIC), uses a double chromatographic separation with a chemical reaction in between to change the physico-chemical properties of the extraneous peptides to be resolved from the peptides of interest. Its previous applications include the separation of methionine-containing peptides (43), N-terminal peptide enrichment (45, 46), sulfur amino acid-containing peptides (47), and phosphorylated peptides (48). COFRADIC was identified as the best method for identification of N-terminal peptides of two archaea, resulting in the identification of 240 polypeptides (9% of the theoretical proteome) for Halobacterium salinarum and 220 (8%) for Natronomonas pharaonis (24).Taking advantage of both the specificity of TMPP labeling, the resolving power of COFRADIC for enrichment, and the increase in information through the use of multiple proteases, we performed the proteogenomic analysis of a marine bacterium from the Roseobacter clade, namely Roseobacter denitrificans OCh114. This novel approach allowed us to validate and correct 534 unique proteins (13% of the theoretical proteome) with TMPP-labeled N-terminal signatures obtained using high-resolution tandem mass spectrometry. We corrected 41 annotations and detected five new open reading frames in the R. denitrificans genome. We further identified eight distinct proteins showing direct evidence for multiple start sites.  相似文献   

19.
STIM1 and ORAI1, the two limiting components in the Ca2+ release-activated Ca2+ (CRAC) signaling cascade, have been reported to interact upon store depletion, culminating in CRAC current activation. We have recently identified a modulatory domain between amino acids 474 and 485 in the cytosolic part of STIM1 that comprises 7 negatively charged residues. A STIM1 C-terminal fragment lacking this domain exhibits enhanced interaction with ORAI1 and 2–3-fold higher ORAI1/CRAC current densities. Here we focused on the role of this CRAC modulatory domain (CMD) in the fast inactivation of ORAI1/CRAC channels, utilizing the whole-cell patch clamp technique. STIM1 mutants either with C-terminal deletions including CMD or with 7 alanines replacing the negative amino acids within CMD gave rise to ORAI1 currents that displayed significantly reduced or even abolished inactivation when compared with STIM1 mutants with preserved CMD. Consistent results were obtained with cytosolic C-terminal fragments of STIM1, both in ORAI1-expressing HEK 293 cells and in RBL-2H3 mast cells containing endogenous CRAC channels. Inactivation of the latter, however, was much more pronounced than that of ORAI1. The extent of inactivation of ORAI3 channels, which is also considerably more prominent than that of ORAI1, was also substantially reduced by co-expression of STIM1 constructs missing CMD. Regarding the dependence of inactivation on Ca2+, a decrease in intracellular Ca2+ chelator concentrations promoted ORAI1 current fast inactivation, whereas Ba2+ substitution for extracellular Ca2+ completely abrogated it. In summary, CMD within the STIM1 cytosolic part provides a negative feedback signal to Ca2+ entry by triggering fast Ca2+-dependent inactivation of ORAI/CRAC channels.The Ca2+ release-activated Ca2+ (CRAC)5 channel is one of the best characterized store-operated entry pathways (17). Substantial efforts have led to identification of two key components of the CRAC channel machinery: the stromal interaction molecule 1 (STIM1), which is located in the endoplasmic reticulum and acts as a Ca2+ sensor (810), and ORAI1/CRACM1, the pore-forming subunit of the CRAC channel (1113). Besides ORAI1, two further homologues named ORAI2 and ORAI3 belong to the ORAI channel family (12, 14).STIM1 senses endoplasmic reticulum store depletion primarily by its luminal EF-hand in its N terminus (8, 15), redistributes close to the plasma membrane, where it forms puncta-like structures, and co-clusters with ORAI1, leading to inward Ca2+ currents (12, 1619). The STIM1 C terminus, located in the cytosol, contains two coiled-coil regions overlapping with an ezrin-radixin-moesin (ERM)-like domain followed by a serine/proline- and a lysine-rich region (2, 8, 2022). Three recent studies have described the essential ORAI-activating region within the ERM domain, termed SOAR (Stim ORAI-activating region) (23), OASF (ORAI-activating small fragment) (24), and CAD (CRAC-activating domain) (25), including the second coiled coil domain and the following ∼55 amino acids. We and others have provided evidence that store depletion leads to a dynamic coupling of STIM1 to ORAI1 (2628) that is mediated by a direct interaction of the STIM1 C terminus with ORAI1 C terminus probably involving the putative coiled-coil domain in the latter (27).Furthermore, different groups have proven that the C terminus of STIM1 is sufficient to activate CRAC as well as ORAI1 channels independent of store depletion (2225, 27, 29). We have identified that OASF-(233–474) or shorter fragments exhibit further enhanced coupling to ORAI1 resulting in 3-fold increased constitutive Ca2+ currents. A STIM1 fragment containing an additional cluster of anionic amino acids C-terminal to position 474 displays weaker interaction with ORAI1 as well as reduced Ca2+ current comparable with that mediated by wild-type STIM1 C terminus. Hence, we have suggested that these 11 amino acids (474–485) act in a modulatory manner onto ORAI1; however, their detailed mechanistic impact within the STIM1/ORAI1 signaling machinery has remained so far unclear.In this study, we focused on the impact of this negative cluster on fast inactivation of STIM1-mediated ORAI Ca2+ currents. Lis et al. (30) have shown that all three ORAI homologues display distinct inactivation profiles, where ORAI2 and ORAI3 show a much more pronounced fast inactivation than ORAI1. Moreover, it has been reported (31) that different expression levels of STIM1 to ORAI1 affect the properties of CRAC current inactivation. Yamashita et al. (32) have demonstrated a linkage between the selectivity filter of ORAI1 and its Ca2+-dependent fast inactivation. Here we provide evidence that a cluster of acidic residues within the C terminus of STIM1 is involved in the fast inactivation of ORAI1 and further promotes that of ORAI3 and native CRAC currents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号