首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotope labeling by amino acids in cell culture (SILAC) provides a straightforward tool for quantitation in proteomics. However, one problem associated with SILAC is the in vivo conversion of labeled arginine to other amino acids, typically proline. We found that arginine conversion in the fission yeast Schizosaccharomyces pombe occurred at extremely high levels, such that labeling cells with heavy arginine led to undesired incorporation of label into essentially all of the proline pool as well as a substantial portion of glutamate, glutamine, and lysine pools. We found that this can be prevented by deleting genes involved in arginine catabolism using methods that are highly robust yet simple to implement. Deletion of both fission yeast arginase genes or of the single ornithine transaminase gene, together with a small modification to growth medium that improves arginine uptake in mutant strains, was sufficient to abolish essentially all arginine conversion. We demonstrated the usefulness of our approach in a large scale quantitative analysis of proteins before and after cell division; both up- and down-regulated proteins, including a novel protein involved in septation, were successfully identified. This strategy for addressing the “arginine conversion problem” may be more broadly applicable to organisms amenable to genetic manipulation.Stable isotope labeling by amino acids in cell culture (SILAC)1 (1) is one of the key methods for large scale quantitative proteomics (2, 3). In SILAC experiments, proteins are metabolically labeled by culturing cells in media containing either normal (“light”) or heavy isotope-labeled amino acids, typically lysine and arginine. Peptides derived from the light and heavy cells are thus distinguishable by mass spectrometry and can be mixed for accurate quantitation. SILAC is also possible at the whole-organism level (4).An inherent problem in SILAC is the metabolic conversion of labeled arginine to other amino acids, as this complicates quantitative analysis of peptides containing these amino acids. Arginine conversion to proline is well described in mammalian cells, although the extent of conversion varies among cell types (5). When conversion is observed, typically 10–25% of the total proline pool is found to contain label (611). Arginine conversion has also been reported in SILAC experiments with budding yeast Saccharomyces cerevisiae (3, 12, 13).Because more than 50% of tryptic peptides in large data sets contain proline (7), it is not practical simply to disregard proline-containing peptides during quantitation. Several methods have been proposed to either reduce arginine conversion or correct for its effects on quantitation. In some cell types, arginine conversion can be prevented by lowering the concentration of exogenous arginine (6, 1416) or by adding exogenous proline (9). However, these methods can involve significant changes to growth media and may need to be tested for each experimental condition used. Given the importance of arginine in many metabolic pathways, careful empirical titration of exogenous arginine concentration is required to minimize negative effects on cell growth (14). In addition, low arginine medium can lead to incomplete arginine labeling, although the reasons for this are not entirely clear (7). An alternative strategy is to omit labeled arginine altogether (3, 13, 17), but this reduces the number of quantifiable peptides. Correction methods include using two different forms of labeled arginine (7) or computationally compensating for proline-containing peptides (11, 12, 18). Ultimately, none of these methods address the problem at its root, the utilization of arginine in cellular metabolism.To develop a differential proteomics work flow for the fission yeast Schizosaccharomyces pombe, we sought to adapt SILAC for use in this organism, a widely used model eukaryote with excellent classical and reverse genetics. Here we describe extremely high conversion of labeled arginine to other amino acids in fission yeast as well as a novel general solution to the problem that should be applicable to other organisms. As proof of principle, we quantitated changes in protein levels before and after cell division on a proteome-wide scale. We identified both up- and down-regulated proteins, including a novel protein involved in septation.  相似文献   

2.
3.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

4.
5.
6.
A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways.Neuropeptides and hormones comprise a diverse class of signaling molecules involved in numerous essential physiological processes, including analgesia, reward, food intake, learning and memory (1). Disorders of the neurosecretory and neuroendocrine systems influence many pathological processes. For example, obesity results from failure of energy homeostasis in association with endocrine alterations (2, 3). Previous work from our lab used crustaceans as model organisms found that multiple neuropeptides were implicated in control of food intake, including RFamides, tachykinin related peptides, RYamides, and pyrokinins (46).Crustacean hyperglycemic hormone (CHH)1 family neuropeptides play a central role in energy homeostasis of crustaceans (717). Hyperglycemic response of the CHHs was first reported after injection of crude eyestalk extract in crustaceans. Based on their preprohormone organization, the CHH family can be grouped into two sub-families: subfamily-I containing CHH, and subfamily-II containing molt-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). The preprohormones of the subfamily-I have a CHH precursor related peptide (CPRP) that is cleaved off during processing; and preprohormones of the subfamily-II lack the CPRP (9). Uncovering their physiological functions will provide new insights into neuroendocrine regulation of energy homeostasis.Characterization of CHH-family neuropeptides is challenging. They are comprised of more than 70 amino acids and often contain multiple post-translational modifications (PTMs) and complex disulfide bridge connections (7). In addition, physiological concentrations of these peptide hormones are typically below picomolar level, and most crustacean species do not have available genome and proteome databases to assist MS-based sequencing.MS-based neuropeptidomics provides a powerful tool for rapid discovery and analysis of a large number of endogenous peptides from the brain and the central nervous system. Our group and others have greatly expanded the peptidomes of many model organisms (3, 1833). For example, we have discovered more than 200 neuropeptides with several neuropeptide families consisting of as many as 20–40 members in a simple crustacean model system (5, 6, 2531, 34). However, a majority of these neuropeptides are small peptides with 5–15 amino acid residues long, leaving a gap of identifying larger signaling peptides from organisms without sequenced genome. The observed lack of larger size peptide hormones can be attributed to the lack of effective de novo sequencing strategies for neuropeptides larger than 4 kDa, which are inherently more difficult to fragment using conventional techniques (3437). Although classical proteomics studies examine larger proteins, these tools are limited to identification based on database searching with one or more peptides matching without complete amino acid sequence coverage (36, 38).Large populations of neuropeptides from 4–10 kDa exist in the nervous systems of both vertebrates and invertebrates (9, 39, 40). Understanding their functional roles requires sufficient molecular knowledge and a unique analytical approach. Therefore, developing effective and reliable methods for de novo sequencing of large neuropeptides at the individual amino acid residue level is an urgent gap to fill in neurobiology. In this study, we present a multifaceted MS strategy aimed at high-definition de novo sequencing and comprehensive characterization of the CHH-family neuropeptides in crustacean central nervous system. The high-definition de novo sequencing was achieved by a combination of three methods: (1) enzymatic digestion and LC-tandem mass spectrometry (MS/MS) bottom-up analysis to generate detailed sequences of proteolytic peptides; (2) off-line LC fractionation and subsequent top-down MS/MS to obtain high-quality fragmentation maps of intact peptides; and (3) on-line LC coupled to top-down MS/MS to allow rapid sequence analysis of low abundance peptides. Combining the three methods overcomes the limitations of each, and thus offers complementary and high-confidence determination of amino acid residues. We report the complete sequence analysis of six CHH-family neuropeptides including the discovery of two novel peptides. With the accurate molecular information, MALDI imaging and ion mobility MS were conducted for the first time to explore their anatomical distribution and biochemical properties.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
SPA2 encodes a yeast protein that is one of the first proteins to localize to sites of polarized growth, such as the shmoo tip and the incipient bud. The dynamics and requirements for Spa2p localization in living cells are examined using Spa2p green fluorescent protein fusions. Spa2p localizes to one edge of unbudded cells and subsequently is observable in the bud tip. Finally, during cytokinesis Spa2p is present as a ring at the mother–daughter bud neck. The bud emergence mutants bem1 and bem2 and mutants defective in the septins do not affect Spa2p localization to the bud tip. Strikingly, a small domain of Spa2p comprised of 150 amino acids is necessary and sufficient for localization to sites of polarized growth. This localization domain and the amino terminus of Spa2p are essential for its function in mating. Searching the yeast genome database revealed a previously uncharacterized protein which we name, Sph1p (Spa2p homolog), with significant homology to the localization domain and amino terminus of Spa2p. This protein also localizes to sites of polarized growth in budding and mating cells. SPH1, which is similar to SPA2, is required for bipolar budding and plays a role in shmoo formation. Overexpression of either Spa2p or Sph1p can block the localization of either protein fused to green fluorescent protein, suggesting that both Spa2p and Sph1p bind to and are localized by the same component. The identification of a 150–amino acid domain necessary and sufficient for localization of Spa2p to sites of polarized growth and the existence of this domain in another yeast protein Sph1p suggest that the early localization of these proteins may be mediated by a receptor that recognizes this small domain.Polarized cell growth and division are essential cellular processes that play a crucial role in the development of eukaryotic organisms. Cell fate can be determined by cell asymmetry during cell division (Horvitz and Herskowitz, 1992; Cohen and Hyman, 1994; Rhyu and Knoblich, 1995). Consequently, the molecules involved in the generation and maintenance of cell asymmetry are important in the process of cell fate determination. Polarized growth can occur in response to external signals such as growth towards a nutrient (Rodriguez-Boulan and Nelson, 1989; Eaton and Simons, 1995) or hormone (Jackson and Hartwell, 1990a , b ; Segall, 1993; Keynes and Cook, 1995) and in response to internal signals as in Caenorhabditis elegans (Goldstein et al., 1993; Kimble, 1994; Priess, 1994) and Drosophila melanogaster (St Johnston and Nusslein-Volhard, 1992; Anderson, 1995) early development. Saccharomyces cerevisiae undergo polarized growth towards an external cue during mating and to an internal cue during budding. Polarization towards a mating partner (shmoo formation) and towards a new bud site requires a number of proteins (Chenevert, 1994; Chant, 1996; Drubin and Nelson, 1996). Many of these proteins are necessary for both processes and are localized to sites of polarized growth, identified by the insertion of new cell wall material (Tkacz and Lampen, 1972; Farkas et al., 1974; Lew and Reed, 1993) to the shmoo tip, bud tip, and mother–daughter bud neck. In yeast, proteins localized to growth sites include cytoskeletal proteins (Adams and Pringle, 1984; Kilmartin and Adams, 1984; Ford, S.K., and J.R. Pringle. 1986. Yeast. 2:S114; Drubin et al., 1988; Snyder, 1989; Snyder et al., 1991; Amatruda and Cooper, 1992; Lew and Reed, 1993; Waddle et al., 1996), neck filament components (septins) (Byers and Goetsch, 1976; Kim et al., 1991; Ford and Pringle, 1991; Haarer and Pringle, 1987; Longtine et al., 1996), motor proteins (Lillie and Brown, 1994), G-proteins (Ziman, 1993; Yamochi et al., 1994; Qadota et al., 1996), and two membrane proteins (Halme et al., 1996; Roemer et al., 1996; Qadota et al., 1996). Septins, actin, and actin-associated proteins localize early in the cell cycle, before a bud or shmoo tip is recognizable. How this group of proteins is localized to and maintained at sites of cell growth remains unclear.Spa2p is one of the first proteins involved in bud formation to localize to the incipient bud site before a bud is recognizable (Snyder, 1989; Snyder et al., 1991; Chant, 1996). Spa2p has been localized to where a new bud will form at approximately the same time as actin patches concentrate at this region (Snyder et al., 1991). An understanding of how Spa2p localizes to incipient bud sites will shed light on the very early stages of cell polarization. Later in the cell cycle, Spa2p is also found at the mother–daughter bud neck in cells undergoing cytokinesis. Spa2p, a nonessential protein, has been shown to be involved in bud site selection (Snyder, 1989; Zahner et al., 1996), shmoo formation (Gehrung and Snyder, 1990), and mating (Gehrung and Snyder, 1990; Chenevert et al., 1994; Yorihuzi and Ohsumi, 1994; Dorer et al., 1995). Genetic studies also suggest that Spa2p has a role in cytokinesis (Flescher et al., 1993), yet little is known about how this protein is localized to sites of polarized growth.We have used Spa2p green fluorescent protein (GFP)1 fusions to investigate the early localization of Spa2p to sites of polarized growth in living cells. Our results demonstrate that a small domain of ∼150 amino acids of this large 1,466-residue protein is sufficient for targeting to sites of polarized growth and is necessary for Spa2p function. Furthermore, we have identified and characterized a novel yeast protein, Sph1p, which has homology to both the Spa2p amino terminus and the Spa2p localization domain. Sph1p localizes to similar regions of polarized growth and sph1 mutants have similar phenotypes as spa2 mutants.  相似文献   

15.
Permeases belonging to the equilibrative nucleoside transporter family promote uptake of nucleosides and/or nucleobases into a wide range of eukaryotes and mediate the uptake of a variety of drugs used in the treatment of cancer, heart disease, AIDS, and parasitic infections. No experimental three-dimensional structure exists for any of these permeases, and they are not present in prokaryotes, the source of many membrane proteins used in crystal structure determination. To generate a structural model for such a transporter, the LdNT1.1 nucleoside permease from the parasitic protozoan Leishmania donovani was modeled using ab initio computation. Site-directed mutations that strongly impair transport or that alter substrate specificity map to the central pore of the ab initio model, whereas mutations that have less pronounced phenotypes map to peripheral positions. The model suggests that aromatic residues present in transmembrane helices 1, 2, and 7 may interact to form an extracellular gate that closes the permeation pathway in the inward oriented conformation. Mutation of two of these three residues abrogated transport activity, consistent with the prediction of the model. The ab initio model is similar to one derived previously using threading analysis, a distinct computational approach, supporting the overall accuracy of both models. However, significant differences in helix orientation and residue position between the two models are apparent, and the mutagenesis data suggest that the ab initio model represents an improvement regarding structural details over the threading model. The putative gating interaction may also help explain differences in substrate specificity between members of this family.Nucleoside transporters play pivotal roles in nucleoside salvage pathways, regulation of adenosine signaling, and the pharmacology of antineoplastic and antiviral nucleoside drugs (1, 2). Salvage of nucleosides and nucleobases is the first step of nucleoside utilization in those cells that lack the metabolic machinery to make purine nucleotides de novo, including protozoan parasites (3) and brain and bone marrow cells in mammals (4). Nucleoside permeases also mediate the uptake of a number of nucleoside analog drugs used to combat the devastating effects of chronic diseases, including those caused by RNA viruses, cancer, and parasitic protozoan infections (5, 6).Equilibrative nucleoside transporters (ENTs)4 are a unique family of proteins (the SLC29 family), with no apparent sequence homology to other types of permeases, that enable facilitated diffusion of nucleosides, nucleoside analogs, and nucleobases across cell membranes. Although widely distributed among eukaryotes from protozoa to humans, ENT-like homologs have not been identified in prokaryotes, and therefore crystallization of these transporters is likely to be even more challenging than for those membrane proteins that do have orthologs in prokaryotes. In the absence of a crystallographic structure, the use of genetic and biochemical approaches, especially site-directed mutagenesis, has begun to reveal a significant number of elements involved in ENT function (723). Previous studies on the LdNT1.1 adenosine and pyrimidine nucleoside permease from the parasitic protozoan Leishmania donovani, an organism that cannot synthesize purines de novo and relies upon purine uptake for survival, have led to valuable insights into the structure and function of this family of permeases (9, 13, 22). Nevertheless, structural coverage is still sparse, and the functional determinants within the ENTs that control substrate translocation and specificity remain largely unknown.Emerging computational methods to overcome the paucity of high resolution structural data include the development of models based upon ab initio techniques (2426) and fold recognition or “threading” (27). Ab initio techniques utilize the physical properties of the primary amino acid sequence to predict structures, whereas threading methods search for an optimal fit of the query sequence onto known three-dimensional structures of other proteins. A preliminary three-dimensional topology for the LdNT2 inosine/guanosine/xanthosine transporter from L. donovani was generated using threading analysis upon the template of the structurally resolved glycerol-3-phosphate transporter of E. coli (12), and a similar threading analysis revealed structural similarities between the TbNT1 nucleobase transporter of Trypanosoma brucei and the lactose permease of E. coli (28). In the current study, we have used a distinct computational approach based upon ab initio algorithms (24) in conjunction with site-directed mutagenesis to arrive at a structural model for LdNT1.1. An encouraging outcome is that both the ab initio and threading approaches resulted in two structural models that share the same overall topology. However, the ab initio model provided structural and functional details not previously observed in the threading model. Indeed, experiments based upon the ab initio model led to the identification of eight new residues that moderately affected LdNT1.1 activity and six novel residues whose mutation abrogated transport function. Most notably, the ab initio model revealed two aromatic amino acids (Phe48 in TM1 and Trp75 in TM2) that may form an interaction motif located in the pore and be involved in holding the transporter in the inward-open conformation. Mutagenesis of these residues confirmed that they are essential for transport. Therefore, the ab initio model of LdNT1.1 offers a framework for predicting intramolecular interactions central to the function of this and related nucleoside permeases.  相似文献   

16.
17.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

18.
19.
20.
The Friend spleen focus-forming virus (SFFV) env gene encodes a glycoprotein with apparent Mr of 55,000 that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. A retroviral vector that does not encode any Env glycoprotein was packaged into retroviral particles and was coinjected into mice in the presence of a nonpathogenic helper virus. Although most mice remained healthy, one mouse developed splenomegaly and polycythemia at 67 days; the virus from this mouse reproducibly caused the same symptoms in secondary recipients by 2 to 3 weeks postinfection. This disease, which was characterized by extramedullary erythropoietin-independent erythropoiesis in the spleens and livers, was also reproduced in long-term bone marrow cultures. Viruses from the diseased primary mouse and from secondary recipients converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives but had no effect on the interleukin-3-dependent parental BaF3 cells. Most of these factor-independent cell clones contained a major Env-related glycoprotein with an Mr of 60,000. During further in vivo passaging, a virus that encodes an Mr-55,000 glycoprotein became predominant. Sequence analysis indicated that the ultimate virus is a new SFFV that encodes a glycoprotein of 410 amino acids with the hallmark features of classical gp55s. Our results suggest that SFFV-related viruses can form in mice by recombination of retroviruses with genomic and helper virus sequences and that these novel viruses then evolve to become increasingly pathogenic.The independently isolated Friend and Rauscher erythroleukemia viruses (18, 48) are complexes of a replication competent murine leukemia virus (MuLV) and a replication-defective spleen focus-forming virus (SFFV) (39, 42, 47). The SFFVs encode Env glycoproteins (gp55) that are inefficiently processed to form larger cell surface derivatives (gp55p) (19). The gp55 binds to erythropoietin receptors (EpoR) to cause erythroblast proliferation and splenomegaly in susceptible mice. Evidence has suggested that the critical mitogenic interaction occurs exclusively on cell surfaces (7, 16).SFFVs are structurally closely related to mink cell focus-inducing viruses (MCFs) (2, 5, 10, 50), a class of replication-competent murine retroviruses that has a broad host range termed polytropic (15, 21). Although MCFs are not inherited as replication-competent intact proviruses, the mouse genome contains numerous dispersed polytropic env gene sequences (8, 17, 27). MCFs apparently readily form de novo by recombination when ecotropic host range MuLVs replicate in mice (14, 15, 26, 43). MCF env genes typically are hybrid recombinants that contain a 5′ polytropic-specific region and a 3′ ecotropic-specific portion (26). They encode a gPr90 Env glycoprotein that is cleaved by partial proteolysis to form the products gp70 surface (SU) glycoprotein plus p15E transmembrane (TM) protein (32, 39, 47). In addition, MCFs often differ from ecotropic MuLVs in their long terminal repeat (LTR) sequences (8, 20, 26, 28, 29, 45).Based on their sequences, SFFVs could have derived from MCFs by a 585-base deletion and by a single-base addition in the ecotropic-specific portion of the env gene (10). Evidence suggests that both the 585-bp deletion and the frameshift mutation probably contribute to SFFV pathogenesis (3, 49). Several pathogenic differences among SFFV strains have also been ascribed to amino acid sequence differences in the ecotropic-specific portion of the Env glycoproteins (9, 41).This report describes the origin and rapid stepwise evolution of a new SFFV. This new pathogenic virus initially formed in a mouse that had been injected with an ecotropic strain of MuLV in the presence of a retroviral vector that does not encode any Env glycoprotein. The mouse developed erythroleukemia, splenomegaly, and polycythemia after a long lag phase. At that time the spleen contained viruses with env genes that were able to activate EpoR. Serial passage of this initial virus isolate resulted in selection of a novel SFFV that encodes a gp55 glycoprotein of 410 amino acids. This experimental system provides a method for isolating new SFFVs and for mapping the stages in their genesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号