首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.  相似文献   

2.
The chemokine CXCL12 regulates multiple cell functions through its receptor, CXCR4. However, recent studies have shown that CXCL12 also binds a second receptor, CXCR7, to potentiate signal transduction and cell activity. In contrast to CXCL12/CXCR4, few studies have focused on the role of CXCR7 in vascular biology and its role in human brain microvascular endothelial cells (HBMECs) remains unclear. In this report, we used complementary methods, including immunocytofluorescence, Western blot, and flow cytometry analyses, to demonstrate that CXCR7 was expressed on HBMECs. We then employed short hairpin RNA (shRNA) technology to knockdown CXCR7 in HBMECs. Knockdown of CXCR7 in HBMECs resulted in significantly reduced HBMEC proliferation, tube formation, and migration, as well as adhesion to matrigel and tumor cells. Blocking CXCR7 with a specific antibody or small molecule antagonist similarly disrupted HBMEC binding to matrigel or tumor cells. We found that tumor necrosis factor (TNF)-α induced CXCR7 in a time and dose-response manner and that this increase preceded an increase in vascular cell adhesion molecule-1 (VCAM-1). Knockdown of CXCR7 resulted in suppression of VCAM-1, suggesting that the reduced binding of CXCR7-knockdown HBMECs may result from suppression of VCAM-1. Collectively, CXCR7 acted as a functional receptor for CXCL12 in brain endothelial cells. Targeting CXCR7 in tumor vasculature may provide novel opportunities for improving brain tumor therapy.  相似文献   

3.
4.
We reported previously that the forced expression of the chemokine BRAK, also called CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells decreased the rate of tumor formation and size of tumor xenografts compared with mock-vector treated cells in athymic nude mice or in severe combined immunodeficiency mice. This suppression occurred even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that a high expression level of the gene in tumor cells is important for the suppression of tumor establishment in vivo. The aim of this study was to determine whether CXCL14/BRAK transgenic mice show resistance to tumor cell xenografts or not. CXCL14/BRAK cDNA was introduced into male C57BL/6 J pronuclei, and 10 founder transgenic mice (Tg) were obtained. Two lines of mice expressed over 10 times higher CXCL14/BRAK protein levels (14 and 11 ng/ml plasma, respectively) than normal blood level (0.9 ng/ml plasma), without apparent abnormality. The sizes of Lewis lung carcinoma and B16 melanoma cell xenografts in Tg mice were significantly smaller than those in control wild-type mice, indicating that CXCL14/BRAK, first found as a suppressor of tumor progression of HNSCC, also suppresses the progression of a carcinoma of other tissue origin. Immunohistochemical studies showed that invasion of blood vessels into tumors was suppressed in tumor xenografts of CXCL14/BRAK Tg mice. These results indicate that CXCL14/BRAK suppressed tumor cell xenografts by functioning paracrine or endocrine fashion and that CXCL14/BRAK is a very promising molecular target for tumor suppression without side effects.  相似文献   

5.
趋化因子是机体内一类重要的生物活性物质,参与多种生理病理活动的调控。趋化因子可通过对血管内皮细胞的趋化作用,引起血管内皮细胞增殖、迁移、毛细血管形成而促进血管生成;部分趋化因子可通过凋亡和抑制多种促血管生成因子的活性而发挥抑制血管生成的作用。现将趋化因子及其受体对血管内皮细胞的作用进行综述。  相似文献   

6.
Interleukin-8 (IL-8/CXCL8) is a chemokine that increases endothelial permeability during early stages of angiogenesis. However, the mechanisms involved in IL-8/CXCL8-induced permeability are poorly understood. Here, we show that permeability induced by this chemokine requires the activation of vascular endothelial growth factor receptor-2 (VEGFR2/fetal liver kinase 1/KDR). IL-8/CXCL8 stimulates VEGFR2 phosphorylation in a VEGF-independent manner, suggesting VEGFR2 transactivation. We investigated the possible contribution of physical interactions between VEGFR2 and the IL-8/CXCL8 receptors leading to VEGFR2 transactivation. Both IL-8 receptors interact with VEGFR2 after IL-8/CXCL8 treatment, and the time course of complex formation is comparable with that of VEGFR2 phosphorylation. Src kinases are involved upstream of receptor complex formation and VEGFR2 transactivation during IL-8/CXCL8-induced permeability. An inhibitor of Src kinases blocked IL-8/CXCL8-induced VEGFR2 phosphorylation, receptor complex formation, and endothelial permeability. Furthermore, inhibition of the VEGFR abolishes RhoA activation by IL-8/CXCL8, and gap formation, suggesting a mechanism whereby VEGFR2 transactivation mediates IL-8/CXCL8-induced permeability. This study points to VEGFR2 transactivation as an important signaling pathway used by chemokines such as IL-8/CXCL8, and it may lead to the development of new therapies that can be used in conditions involving increases in endothelial permeability or angiogenesis, particularly in pathological situations associated with both IL-8/CXCL8 and VEGF.  相似文献   

7.
We reported previously that the forced expression of the chemokine BRAK, also called CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells decreased the rate of tumor formation and size of tumor xenografts compared with mock-vector treated cells in athymic nude mice or in severe combined immunodeficiency mice. This suppression occurred even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that a high expression level of the gene in tumor cells is important for the suppression of tumor establishment in vivo. The aim of this study was to determine whether CXCL14/BRAK transgenic mice show resistance to tumor cell xenografts or not. CXCL14/BRAK cDNA was introduced into male C57BL/6 J pronuclei, and 10 founder transgenic mice (Tg) were obtained. Two lines of mice expressed over 10 times higher CXCL14/BRAK protein levels (14 and 11 ng/ml plasma, respectively) than normal blood level (0.9 ng/ml plasma), without apparent abnormality. The sizes of Lewis lung carcinoma and B16 melanoma cell xenografts in Tg mice were significantly smaller than those in control wild-type mice, indicating that CXCL14/BRAK, first found as a suppressor of tumor progression of HNSCC, also suppresses the progression of a carcinoma of other tissue origin. Immunohistochemical studies showed that invasion of blood vessels into tumors was suppressed in tumor xenografts of CXCL14/BRAK Tg mice. These results indicate that CXCL14/BRAK suppressed tumor cell xenografts by functioning paracrine or endocrine fashion and that CXCL14/BRAK is a very promising molecular target for tumor suppression without side effects.  相似文献   

8.
Reversible ubiquitination orchestrated by the opposition of ubiquitin ligases and deubiquitinating enzymes mediates endocytic trafficking of cell surface receptors for lysosomal degradation. Ubiquitin-specific protease 8 (USP8) has previously been implicated in endocytosis of several receptors by virtue of their deubiquitination. The present study explores an indirect role for USP8 in cargo trafficking through its regulation of the chemokine receptor 4 (CXCR4). Contrary to the effects of USP8 loss on enhanced green fluorescent protein, we find that USP8 depletion stabilizes CXCR4 on the cell surface and attenuates receptor degradation without affecting its ubiquitination status. In the presence of ligand, diminished CXCR4 turnover is accompanied by receptor accumulation on enlarged early endosomes and leads to enhancement of phospho-ERK signaling. Perturbation in CXCR4 trafficking, resulting from USP8 inactivation, occurs at the ESCRT-0 checkpoint, and catalytic mutation of USP8 specifically targeted to the ESCRT-0 complex impairs the spatial and temporal organization of the sorting endosome. USP8 functionally opposes the ubiquitin ligase AIP4 with respect to ESCRT-0 ubiquitination, thereby promoting trafficking of CXCR4. Collectively, our findings demonstrate a functional cooperation between USP8, AIP4, and the ESCRT-0 machinery at the early sorting phase of CXCR4 and underscore the versatility of USP8 in shaping trafficking events at the early-to-late endosome transition.  相似文献   

9.
Chemokines orchestrate the migration of leukocytes in the context of homeostasis and inflammation. In addition to interactions of chemokines with receptors on migrating cells, these processes require interactions of chemokines with glycosaminoglycans (GAGs) for cell surface localization. Most chemokines are basic proteins with Arg/Lys/His residue clusters functioning as recognition epitopes for GAGs. In this study we characterized the GAG-binding epitopes of the chemokine I-TAC/CXCL11. Four separate clusters of basic residues were mutated to alanine and tested for their ability to bind to GAGs in vitro and to activate the receptor, CXCR3. Mutation of a set of basic residues in the C-terminal helix (the 50s cluster, 57KSKQAR62) along with Lys17, significantly impaired heparin binding in vitro, identifying these residues as components of the dominant epitope. However, this GAG mutant retained nearly wild type receptor binding affinity, and its ability to induce cell migration in vitro was only mildly perturbed. Nevertheless, the mutant was unable to induce cell migration in vivo, establishing a requirement of CXCL11 for GAG binding for in vivo function. These studies also led to some interesting findings. First, CXCL11 exhibits conformational heterogeneity, as evidenced by the doubling of peaks in its HSQC spectra. Second, it exhibits more than one affinity state for both heparin and CXCR3, which may be related to its structural plasticity. Finally, although the binding affinities of chemokines for GAGs are typically weaker than interactions with receptors, the high affinity GAG binding state of CXCL11 is comparable with typical receptor binding affinities, suggesting some unique properties of this chemokine.  相似文献   

10.
It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF) in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by the presence of an autoantibody against factor H. The in vivo Weibel-Palade body secretagogue, des-amino-D-arginine vasopressin (DDAVP), would be expected to increase transiently the circulating factor H levels, in addition to increasing the circulating levels of VWF. We describe experiments demonstrating that factor H is released from endothelial cell cytoplasm without a secondary storage site. These experiments showed that factor H is not stored with VWF in endothelial cell Weibel-Palade bodies, and is not secreted in response in vitro in response to the Weibel-Palade body secretagogue, histamine. Furthermore, the in vivo Weibel-Palade body secretagogue, DDAVP does not increase the circulating factor H levels concomitantly with DDAVP-induced increased VWF. Factor I, a regulatory component of the alternative complement pathway that is functionally related to factor H, is also located in endothelial cell cytoplasm, and is also not present in endothelial cell Weibel-Palade bodies. Our data demonstrate that the factor H and factor I regulatory proteins of the alternative complement pathway are not stored in Weibel-Palade bodies. DDAVP induces the secretion into human plasma of VWF —- but not factor H.  相似文献   

11.
All chemokines share a common structural scaffold that mediate a remarkable variety of functions from immune surveillance to organogenesis. Chemokines are classified as CXC or CC on the basis of conserved cysteines, and the two subclasses bind distinct sets of GPCR class of receptors and also have markedly different quaternary structures, suggesting that the CXC/CC motif plays a prominent role in both structure and function. For both classes, receptor activation involves interactions between chemokine N-loop and receptor N-domain residues (Site-I), and between chemokine N-terminal and receptor extracellular/transmembrane residues (Site-II). We engineered a CC variant (labeled as CC-CXCL8) of the chemokine CXCL8 by deleting residue X (CXC → CC), and found its structure is essentially similar to WT. In stark contrast, CC-CXCL8 bound poorly to its cognate receptors CXCR1 and CXCR2 (Ki > 1 μm). Further, CC-CXCL8 failed to mobilize Ca2+ in CXCR2-expressing HL-60 cells or recruit neutrophils in a mouse lung model. However, most interestingly, CC-CXCL8 mobilizes Ca2+ in neutrophils and in CXCR1-expressing HL-60 cells. Compared with the WT, CC-CXCL8 binds CXCR1 N-domain with only ∼5-fold lower affinity indicating that the weak binding to intact CXCR1 must be due to its weak binding at Site-II. Nevertheless, this level of binding is sufficient for receptor activation indicating that affinity and activity are separable functions. We propose that the CXC motif functions as a conformational switch that couples Site-I and Site-II interactions for both receptors, and that this coupling is critical for high affinity binding but differentially regulates activation.  相似文献   

12.
牛青霞  陈卓毅  林洁莲  郑坚 《生物磁学》2011,(15):2818-2821
目的:研究胰蛋白酶对IL-8释放的影响。方法:分离、培养人脐静脉内皮细胞(human umbilical vein endothelialcells,HU-VECs)、倒置显微镜观察形态变化,流式细胞术检测内皮细胞标志和蛋白酶活化受体.2(proteinase.activatedreceptor.2,PAR-2)表达,ELISA检测HUVECs培养上清中IL-8水平。结果:HUVECs表达内皮细胞标志和PAR-2。刺激16h,1g/ml胰蛋白酶和100MPAR-2激活肽组HUVECs单层均匀性降低。胰蛋白酶能够显著刺激HUVECs释放IL-8,PAR-2激活肽也诱导IL-8水平升高。蛋白酶抑制剂和PAR-2抑制肽均能够显著抑制胰蛋白酶诱导的IL-8释放。PAR-2激活肽和胰蛋白酶诱导升高的IL-8水平之间成正相关性。结论:胰蛋白酶很可能通过PAR-2激活促进血管内皮细胞释放IL-8。  相似文献   

13.
目的:研究胰蛋白酶对IL-8释放的影响。方法:分离、培养人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)、倒置显微镜观察形态变化,流式细胞术检测内皮细胞标志和蛋白酶活化受体-2(proteinase-activated receptor-2,PAR-2)表达,ELISA检测HUVECs培养上清中IL-8水平。结果:HUVECs表达内皮细胞标志和PAR-2。刺激16 h,1 g/ml胰蛋白酶和100M PAR-2激活肽组HUVECs单层均匀性降低。胰蛋白酶能够显著刺激HUVECs释放IL-8,PAR-2激活肽也诱导IL-8水平升高。蛋白酶抑制剂和PAR-2抑制肽均能够显著抑制胰蛋白酶诱导的IL-8释放。PAR-2激活肽和胰蛋白酶诱导升高的IL-8水平之间成正相关性。结论:胰蛋白酶很可能通过PAR-2激活促进血管内皮细胞释放IL-8。  相似文献   

14.
目的:周皮细胞的分化在血管新生过程中具有重要作用,没有周皮细胞及其分泌组建的基底膜的支撑,毛细血管就没有正常的功能.作者以前的工作证明周皮细胞可能来源于外周血循环纤维细胞(PBFC),但血管内皮细胞如何趋化PBFC还不清楚.本实验重点观察CXCL8及其受体CXCR2在血管内皮细胞趋化PBFC中的作用.方法:分离纯化人PBFC后与人微血管内皮细胞(HDMEC)共培养,观察共培养条件下PBFC的形态学改变,并检测PBFC细胞内CXCR2 mRNA表达和HDMEC内CXCL8mRNA的表达.结果:与HDMEC共培养后,PBFC由梭形向菱形改变;HDMEC内的CXCL8 mRNA水平与PBFC共培养24小时后增高约10倍,培养后48小时仍维持在高水平;PBFC内的CXCR2 mRNA水平在共培养后24小时增高约3倍,且在培养后24小时仍维持在较高水平.结论:CXCL8/CXCR2可能参与了血管内皮细胞趋化PBFC的过程.  相似文献   

15.
We recently reported that CXCL8((3-73))K11R is a high affinity agonist of neutrophil activation and chemotactic responses. In this report we employed CXCL8((3-73))K11R as a template to generate CXCL8/IL-8 analogues with antagonist activities, using site-directed mutagenesis to introduce conservative amino acid substitutions into the first turn within the molecule's beta-pleated sheet region (G31P, P32G) and, in association with these, into the putative receptor-recognition site (T12S, H13F, F17S). We then examined their impact on the analogues' biological activities and found that a G31P substitution rendered CXCL8((3-73))K11R a high affinity antagonist of CXCL8/IL-8. The ranking (in the order of decreasing CXCL8/IL-8 antagonist activities) of the CXCL8((3-73))K11R analogues we generated was, G31P>T12S/G31P>H13F/G31P>T12S/H13F/G31P>P32G approximately T12S/P32G approximately H13F/P32G>T12S/H13F/P32G; CXCL8((3-73))K11R/F17S did not inhibit CXCL8/IL-8-dependent responses. CXCL8((3-73))K11R/G31P had no discernible agonist (beta-glucuronidase release, chemotactic) activity, but at 12.5 ng/ml it bound to purified neutrophils more avidly than did 1.25 microg/ml CXCL8/IL-8. Furthermore, CXCL8((3-73))K11R/G31P competitively antagonized the binding of CXCR1- and CXCR2-specific antibodies to these receptors. Taken together, these data thus provide further impetus to the study of the potential efficacy of CXCL8((3-73))K11R/G31P as a broad-spectrum antagonist of the ELR-CXC chemokines in experimental and clinical settings.  相似文献   

16.
The platelet-derived chemokine CXCL4 takes a specific and unique position within the family of chemotactic cytokines. Today, much attention is directed to CXCL4's capacity to inhibit angiogenesis and to promote innate immune responses, which makes this chemokine an interesting tool and target for potential intervention in tumor growth and inflammation. However, such attempts demand a comprehensive knowledge on the molecular mechanisms and pathways underlying the corresponding cellular functions. At least two structurally different receptors, CXCR3-B and a chondroitin sulfate proteoglycan, are capable of binding CXCL4 and to induce a specific intracellular signaling machinery. While signaling mediated by CXCR3-B involves Gs proteins, elevated cAMP levels, and p38 MAP kinase, signaling via proteoglycans appears to be more complicated and varies strongly between the cell types analyzed. In CXCL4-activated neutrophils and monocytes, tyrosine kinases of the Src family and Syk as well as monomeric GTPases and members of the MAP kinase family have been identified as essential intracellular signals. Most intriguingly, signaling does not proceed in a linear sequence of events but in a repeated activation of certain transducing elements like Rac2 or sphingosine kinase 1. Depending on the downstream targets, such biphasic kinetics either leads to a redundant and prolonged activation of a single pathway or to a timely separated initiation of disparate signals and functions. Results of the studies reviewed here help to understand the molecular basis of CXCL4's functional diversity and provide insights into integrated signaling processes in general.  相似文献   

17.
18.
Chemokines are a large family of chemotactic cytokines playing crucial roles in the innate immune response. In the present study, we report the cloning of a CXC chemokine gene resembling the closely related CXCL9/CXCL10/CXCL11 from the miiuy croaker Miichthys miiuy (MimiCXC). Both 5'-RACE and 3'-RACE were carried out in order to obtain the complete cDNA, which consists of a 73 bp 5'-UTR, a 369 bp open reading frame encoding 122 amino acids and a 715 bp 3'-UTR. The deduced MimiCXC contains a 19-aa signal peptide and a 103-aa mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CXC chemokines. It shares 4.8%-65.6% sequence identities to mammalian CXC chemokines and the highest sequence identity of 65.6% is between MimiCXC and CXCL10 chemokine. Three exons and two introns were identified in MimiCXC gene. The MimiCXC gene was constitutively expressed in all tissues tested, although at different levels. Upon induction with Vibrio anguillarum, MimiCXC gene expression was up-regulated in kidney and spleen, however, down-regulated in liver. These results indicate that MimiCXC may be involved in immune responses as well as homeostatic processes in miiuy croaker.  相似文献   

19.
The aim of the study was to test the hypothesis that B-cell repopulation following rituximab (anti-CD20) therapy is orchestrated by chemokines and non-chemokine cytokines. Twenty-five children with opsoclonus-myoclonus syndrome (OMS) received rituximab with or without conventional agents. A comprehensive panel of 40 chemokines and other cytokines were measured in serum by ELISA and multiplexed fluorescent bead-based immunoassay. Serum BAFF concentration changed dramatically (even after first infusion) and inversely with B-cell depletion/repopulation and CXCL13 concentration at 1, 3, and 6 months. Negative correlations were found for BAFF concentration vs blood B cell percentage and serum CXCL13 concentration; positive correlations with serum rituximab concentrations. Six months after initiation of therapy, no significant difference in the levels of APRIL, CXCL10, IL-6, or 17 other cytokines/chemokines were detected. These data reveal a major role for BAFF in peripheral B cell repopulation following rituximab-induced B-cell depletion, and novel changes in CXCL13. ClinicalTrials.gov NCT0024436.  相似文献   

20.
The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its G-protein-coupled receptor (GPCR) CXCR4 play fundamental roles in many physiological processes, and CXCR4 is a drug target for various diseases such as cancer metastasis and human immunodeficiency virus, type 1, infection. However, almost no structural information about the SDF-1-CXCR4 interaction is available, mainly because of the difficulties in expression, purification, and crystallization of CXCR4. In this study, an extensive investigation of the preparation of CXCR4 and optimization of the experimental conditions enables NMR analyses of the interaction between the full-length CXCR4 and SDF-1. We demonstrated that the binding of an extended surface on the SDF-1 β-sheet, 50-s loop, and N-loop to the CXCR4 extracellular region and that of the SDF-1 N terminus to the CXCR4 transmembrane region, which is critical for G-protein signaling, take place independently by methyl-utilizing transferred cross-saturation experiments along with the usage of the CXCR4-selective antagonist AMD3100. Furthermore, based upon the data, we conclude that the highly dynamic SDF-1 N terminus in the 1st step bound state plays a crucial role in efficiently searching the deeply buried binding pocket in the CXCR4 transmembrane region by the “fly-casting” mechanism. This is the first structural analyses of the interaction between a full-length GPCR and its chemokine, and our methodology would be applicable to other GPCR-ligand systems, for which the structural studies are still challenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号