首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
It has been proposed that ligand occupancy of integrin αvβ3 with extracellular matrix ligands (e.g. vitronectin) plays a critical role in insulin-like growth factor-1 (IGF-1) signaling. We found that expression of αvβ3 enhanced IGF-1-induced proliferation of Chinese hamster ovary cells in serum-free conditions (in the absence of vitronectin). We hypothesized that the direct integrin binding to IGF-1 may play a role in IGF-1 signaling. We demonstrated that αvβ3 specifically and directly bound to IGF-1 in cell adhesion, enzyme-linked immunosorbent assay-type binding, and surface plasmon resonance studies. We localized the amino acid residues of IGF-1 that are critical for integrin binding by docking simulation and mutagenesis. We found that mutating two Arg residues at positions 36 and 37 in the C-domain of IGF-1 to Glu (the R36E/R37E mutation) effectively reduced integrin binding. Interestingly, although the mutant still bound to IGF1R, it was defective in inducing IGF1R phosphorylation, AKT and ERK1/2 activation, and cell proliferation. Furthermore wild type IGF-1 mediated co-precipitation of αvβ3 and IGF1R, whereas the R36E/R37E mutant did not, suggesting that IGF-1 mediates the interaction between αvβ3 and IGF1R. These results suggest that the direct binding to IGF-1 to integrin αvβ3 plays a role in IGF-1 signaling through ternary complex formation (αvβ3-IGF-IGF1R), and integrin-IGF-1 interaction is a novel target for drug discovery.Integrins are a family of cell adhesion receptors that mediate cell-extracellular matrix (ECM)3 interaction and cell-cell interaction (1). It has been proposed that signaling from inside the cells regulates the ligand binding affinity of integrins (inside-out signaling) (2). Each integrin is a heterodimer containing α and β subunits. At present 18 α and 8 β subunits have been identified that combine to form 24 integrins (3).It has been reported that integrin αvβ3 plays a role in cancer proliferation and invasiveness. High levels of integrin αvβ3 correlate with growth and/or progression of melanoma (4, 5), neuroblastoma (6), breast cancer (7, 8), colon cancer (9), ovarian cancer (10), and cervical cancer (11). Moreover, individuals homozygous for the β3L33P polymorphism that enhances the ligand binding affinity of β3 integrins have an increased risk to develop breast cancer, ovarian cancer, and melanoma (12). However, it remains unclear whether and how increased levels of αvβ3 on tumor cells contribute to cancer development.Insulin-like growth factor-1 (IGF-1) is a polypeptide hormone (75 kDa) that has a high degree of structural similarity to human proinsulin. IGF-1 acts through binding to the type I IGF receptor (IGF1R), a receptor tyrosine kinase. The IGF1R is a heterotetramer that consists of two α-subunits that contain the ligand-binding domains and two β-subunits that contain the tyrosine kinase activity. After ligand binding, the receptor undergoes a conformational change resulting in the activation of the tyrosine kinase, which results in transphosphorylation of the opposite β-subunit on specific tyrosine residues. These phosphotyrosines then bind to adapter molecules such as Shc and IRS-1. Phosphorylation of these proteins leads to activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK) signaling pathways (reviewed in Ref. 13).IGF-1 has been implicated in cancer progression (14). One of the major actions of IGF-1 is to inhibit apoptosis. IGF-1 confers resistance to chemotherapy and radiation therapy. IGF-1 expression levels are increased in breast, lung, prostate, and many other cancers. Several strategies to target IGF-1 signaling have been extensively studied, including small interfering RNA and monoclonal antibodies for IGF1R and kinase inhibitors to inhibit the enzymatic activity of the receptor. The IGF-1 system is a therapeutic target for cancer, and elucidation of the IGF-1 signaling pathway should have a major impact in designing new therapeutic strategies.It has been proposed that ligand occupancy of αvβ3 with ECM ligands such as vitronectin plays a critical role in enhancing IGF-1 signaling (14). It has been reported that inhibiting αvβ3-ECM interaction (“ligand occupancy”) of αvβ3 inhibited IGF-1 actions selectively in cell types that express αvβ3 (14). Inhibiting ligand occupancy of αvβ3 blocked IGF-1-induced cell migration (15), DNA synthesis, IRS-1 phosphorylation, and IGF1R-linked downstream signaling events, such as activation of phosphatidylinositol 3-kinase and ERK1/2 (16).In the present study, we demonstrated that expression of αvβ3 enhanced proliferation of ovarian cancer cells in the presence of fetal bovine serum (FBS) and in serum-free conditions if IGF-1 was present. This suggests that IGF-1 is involved in enhanced proliferation of αvβ3-expressing cells. We demonstrated that αvβ3 bound to IGF-1 in several different binding assays. We found that two Arg residues at positions 36 and 37 in the C-domain of IGF-1 are critical for integrin binding by docking simulation and mutagenesis. Mutation of these Arg residues to Glu (the R36E/R37E mutation) effectively reduced integrin binding. Interestingly, the R36E/R37E mutant was defective in inducing cell proliferation and IGF-1 intracellular signaling, although it still bound to IGF1R. We demonstrated that wild type IGF-1 mediated co-precipitation of αvβ3 and IGF1R, whereas the R36E/R37E mutant did not, suggesting that IGF-1 mediates the interaction between αvβ3 and IGF1R. These results suggest that the direct binding to IGF-1 plays a role in IGF-1 signaling.  相似文献   

12.
Plasminogen activator inhibitor-1 (PAI-1) is a multifunctional glycoprotein that plays a critical role in the pathogenesis of chronic kidney and cardiovascular diseases. Although transforming growth factor (TGF)-β1 is a known inducer of PAI-1, how it controls PAI-1 expression remains enigmatic. Here we investigated the mechanism underlying TGF-β1 regulation of PAI-1 in kidney tubular epithelial cells (HKC-8). Surprisingly, overexpression of Smad2 or Smad3 in HKC-8 cells blocked PAI-1 induction by TGF-β1, whereas knockdown of them sensitized the cells to TGF-β1 stimulation, suggesting that Smad signaling is not responsible for PAI-1 induction. Blockade of several TGF-β1 downstream pathways such as p38 MAPK or JNK, but not phosphatidylinositol 3-kinase/Akt and ERK1/2, only partially inhibited PAI-1 expression. TGF-β1 stimulated β-catenin activation in tubular epithelial cells, and ectopic expression of β-catenin induced PAI-1 expression, whereas inhibition of β-catenin abolished its induction. A functional T cell factor/lymphoid enhancer-binding factor-binding site was identified in the promoter region of the PAI-1 gene, which interacted with T cell factor upon β-catenin activation. Deletion or site-directed mutation of this site abolished PAI-1 response to β-catenin or TGF-β1 stimulation. Similarly, ectopic expression of Wnt1 also activated PAI-1 expression and promoter activity. In vivo, PAI-1 was induced in kidney tubular epithelia in obstructive nephropathy. Delivery of Wnt1 gene activated β-catenin and promoted PAI-1 expression after obstructive injury, whereas blockade of Wnt/β-catenin signaling by Dickkopf-1 gene inhibited PAI-1 induction. Collectively, these studies identify PAI-1 as a direct downstream target of Wnt/β-catenin signaling and demonstrate that PAI-1 induction could play a role in mediating the fibrogenic action of this signaling.  相似文献   

13.
14.
15.
16.
Both vascular endothelial growth factor receptors (VEGFR) and integrins are major regulators of VEGF-induced angiogenesis. Previous work has shown that β3 integrin can regulate negatively VEGFR2 expression. Here we show that β3 integrin can regulate negatively VEGF-mediated angiogenesis by limiting the interaction of the co-receptor NRP1 (neuropilin-1) with VEGFR2. In the presence of αvβ3 integrin, NRP1 contributed minimally to VEGF-induced angiogenic processes in vivo, ex vivo, and in vitro. Conversely, when β3 integrin expression is absent or low or its function is blocked with RGD-mimetic inhibitors, VEGF-mediated responses became NRP1-dependent. Indeed, combined inhibition of β3 integrin and NRP1 decreased VEGF-mediated angiogenic responses further than individual inhibition of these receptors. We also show that αvβ3 integrin can associate with NRP1 in a VEGF-dependent fashion. Our data suggest that β3 integrin may, in part, negatively regulate VEGF signaling by sequestering NRP1 and preventing it from interacting with VEGFR2.  相似文献   

17.
18.
Oral mucosal wounds heal with reduced scar formation compared with skin. The epithelial integrin αvβ6 is induced during wound healing, and it can activate fibrogenic transforming growth factor β1 (TGF-β1) and anti-fibrogenic TGF-β3 that play key roles in scar formation. In this study, expression of β6 integrin and members of the TGF-β pathway were studied in experimental wounds of human gingiva and both gingiva and skin of red Duroc pigs using real-time PCR, gene microarrays, and immunostaining. Similar to human wounds, the expression of β6 integrin was induced in the pig wounds 7 days after wounding and remained upregulated >49 days. The αvβ6 integrin was colocalized with both TGF-β isoforms in the wound epithelium. Significantly higher expression levels of β6 integrin and TGF-β1 were observed in the pig gingival wounds compared with skin. Early gingival wounds also expressed higher levels of TGF-β3 compared with skin. The spatio-temporal colocalization of αvβ6 integrin with TGF-β1 and TGF-β3 in the wound epithelium suggests that αvβ6 integrin may activate both isoforms during wound healing. Prolonged expression of αvβ6 integrin along with TGF-β3 in the gingival wound epithelium may be important in protection of gingiva from scar formation. (J Histochem Cytochem 57:543–557, 2009)  相似文献   

19.
20.
The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号