首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S1104. Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y998 or in the S1039 region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation.Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR)1 are aberrantly activated by mutation and/or over-expression in numerous human cancers (1, 2). Ligand-activated EGFR, similar to many receptor tyrosine kinases, is normally subject to clathrin-mediated endocytosis (CME) involving internalization and followed by sorting through the endosomal compartment (reviewed in 3). From endosomes, and as a function of which ligand is bound, the receptor may be recycled back to the cell surface or down-regulated as a consequence of trafficking to lysosomes for proteolytic degradation (4, 5). The EGFR also undergoes CME-mediated internalization and recycling back to the plasma membrane in response to cellular stresses that activate p38 MAPK, for example in response to the chemotherapeutic agent cisplatin, the antibiotic anisomycin, and the cytokine tumor necrosis factor-α (TNFα) (68). Various oncogenic mutations in the EGFR, as well as hetero-dimerization with other ErbB family members impairs EGFR down-regulation (9). This leads to aberrant, sustained EGFR signaling, which elicits cellular responses central to the cancer cell phenotype including cell proliferation, survival, motility/migration, and invasion (reviewed in 10).EGFR signaling and trafficking involve an overlapping set of factors that have been extensively reviewed (10, 11). These processes are products of EGFR protein-protein interactions and post-translational modifications (PTMs) including phosphorylation, ubiquitinylation, and lysine acetylation (12). Extracellular binding of ligand induces EGFR dimerization and trans-autophosphorylation at intracellular tyrosine residues, which serve as binding sites for various enzymes and adaptor proteins (11). These receptor-binding proteins are involved in signaling and/or receptor trafficking, and also lead to further modulation of receptor PTMs. For example, binding of the E3 ubiquitin ligase CBL at EGFR pY1069 (1315) or indirectly through the adaptor protein Grb2, which binds primarily at pY1092 (16), are both involved in EGFR ubiquitinylation and down-regulation (17). Although not an exclusive mechanism, EGFR internalization mainly involves clathrin and the AP-2 clathrin adaptor complex (12, 1822) in addition to Grb2 (18, 23, 24). EGFR internalization and recycling in response to stress-induced p38 MAPK activation requires AP-2, but not Grb2 (18), and is reportedly independent of receptor kinase activity, tyrosine phosphorylation, and ubiquitination (68). Trafficking of endocytosed EGFR to the lysosome, but not the initial internalization step itself, requires CBL (25, 26), and is associated with ubiquitination at up to six lysine residues within the EGFR kinase domain (14). Additionally, ubiquitin-interacting endocytosis factors including Hrs, STAM, and STAM2 become tyrosine phosphorylated in response to EGFR activation (27), and EGFR ubiquitination is required for endosomal sorting (3). Gill and colleagues identified in the EGFR a region spanning residues 997–1046 as conferring endocytic function to otherwise endocytosis-defective EGF receptors truncated after the kinase domain (28). Consistent with this, EGFR phosphorylation sites linked with receptor trafficking are present within or proximal to this part of the receptor. For example, EGFR phosphorylation at S991 and Y998 accumulate with relatively slow kinetics following stimulation of cells with EGF (29). Phosphorylation-defective variants Y998F and S991A are impaired for ligand-stimulated down-regulation relative to wild type (WT) EGFR, but remain proficient for rapid EGFR-to-ERK signaling (29). Non-phosphorylated Y998 was cited as part of an AP-2 binding motif (Y998RAL) (22), while a nearby di-leucine motif (LL1034/35) also serves as an AP-2 binding site (22, 30). Phosphorylations at EGFR S1039 and T1041 occur downstream of p38 MAPK in response to anisomycin-induced cell stress, and are also phosphorylated at lower levels as part of the normal cellular response to EGFR activation by EGF (29). The adaptor protein Odin (ANKS1A) becomes tyrosine phosphorylated prior to EGFR internalization following EGF treatment of cells, and functions as an effector of EGFR recycling (31). Therefore, in response to diverse extracellular signals a multitude of reversible PTMs and interacting proteins govern EGFR internalization, trafficking, and ultimately, stability and signaling. However, our understanding of spatial-temporal and mechanistic relationships of individual EGFR PTMs and protein interactions, and their biological consequences are largely qualitative and incomplete.The objective of the current study was to characterize and compare aspects of the initial, pre- and post-internalization stages of EGFR endocytosis in response to EGF and cell stress. A battery of methods was applied to identify and absolutely or relatively quantify EGFR phosphorylation, ubiquitination, and protein-protein interactions. These included fluorescence microscopic imaging, and quantitative LC-MS/MS including targeted measurements by selected reaction monitoring (SRM), and comprehensive quantification by using ultra high resolution MS. These were applied with an established model system based on human HEK293 cells engineered to express defined levels of wild type and various phosphorylation-defective EGFR variants tagged with the Flag epitope. The comprehensive analysis revealed distinctive patterns of EGFR modifications and interactions that correlated with receptor activation and internalization. Generally, EGF-stimulated EGFR tyrosine phosphorylations and lysine ubiquitinations, which were maximal prior to internalization, decreased 15-min after receptor internalization was initiated, whereas S/T phosphorylations increased. A subset of EGF-stimulated S/T phosphorylations including pS991 and pS1039 and proximal S/T residues accumulated to an even greater extent in response to anisomycin. EGFR variants with amino acid substitutions at these positions were largely impaired for AP-1 and AP-2 interactions, showed altered patterns of ubiquitination, and resistance to EGF-stimulated receptor down-regulation. These results provide new insight into the dynamics and molecular events associated with EGFR function.  相似文献   

2.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

3.
Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two α:β tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser16, Ser25, Ser38, and Ser63) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser16 or Ser63, and doubly phosphorylated at Ser25 and Ser38, on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser16 or Ser63 strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser16 and Ser63 and support the hypothesis that selective targeting by Ser16-specific or Ser63-specific kinases provides complimentary mechanisms for regulating microtubule function.Stathmin is an 18-kDa ubiquitously expressed microtubule-destabilizing phosphoprotein whose activity is modulated by phosphorylation of its four serine residues, Ser16, Ser25, Ser38, and Ser63 (17). Several classes of kinases have been identified that phosphorylate stathmin, including kinases associated with cell growth and differentiation such as members of the mitogen-activated protein kinase (MAPK)2 family, cAMP-dependent protein kinase (15, 811), and kinases associated with cell cycle regulation such as cyclin-dependent kinase 1 (3, 1214). Phosphorylation of stathmin is required for cell cycle progression through mitosis and for proper assembly/function of the mitotic spindle (3, 1316). Inhibition of stathmin phosphorylation produces strong mitotic phenotypes characterized by disassembly and disorganization of mitotic spindles and abnormal chromosome distributions (3, 1314).Stathmin is known to destabilize microtubules in two ways. One is by binding to soluble tubulin and forming a stable complex that cannot polymerize into microtubules, consisting of one molecule of stathmin and two molecules of tubulin (T2S complex) (1724). Addition of stathmin to microtubules in equilibrium with soluble tubulin results in sequestration of the tubulin and a reduction in the level of microtubule polymer (1718, 22, 2528). In addition to reducing the amount of assembled polymer, tubulin sequestration by stathmin has been shown to increase the switching frequency at microtubule plus ends from growth to shortening (called the catastrophe frequency) as the microtubules relax to a new steady state (17, 29). The second way is by binding directly to microtubules (2730). The direct binding of stathmin to microtubules increases the catastrophe frequency at both ends of the microtubules and considerably more strongly at minus ends than at plus ends (27). Consistent with its strong catastrophe-promoting activity at minus ends, stathmin increases the treadmilling rate of steady-state microtubules in vitro (27). These results have led to the suggestion that stathmin might be an important cellular regulator of minus-end microtubule dynamics (27).Phosphorylation of stathmin diminishes its ability to regulate microtubule polymerization (3, 14, 2526). Phosphorylation of Ser16 or Ser63 appears to be more critical than phosphorylation of Ser25 and Ser38 for the ability of stathmin to bind to soluble tubulin and to inhibit microtubule assembly in vitro (3, 25). Inhibition of stathmin phosphorylation induces defects in spindle assembly and organization (3, 14) suggesting that not only soluble tubulin-microtubule levels are regulated by phosphorylation of stathmin, but the dynamics of microtubules could also be regulated in a phosphorylation-dependent manner.It is not known how phosphorylation at any of the four serine residues of stathmin affects its ability to regulate microtubule dynamics and, specifically, its ability to increase the catastrophe frequency at plus and minus ends due to its direct interaction with microtubules. Thus, we determined the effects of stathmin individually phosphorylated at either Ser16 or Ser63 and doubly phosphorylated at both Ser25 and Ser38 on dynamic instability at plus and minus ends in vitro at microtubule polymer steady state and physiological pH (pH 7.2). We find that phosphorylation of Ser16 strongly reduces the direct catastrophe-promoting activity of stathmin at plus ends and abolishes it at minus ends, whereas phosphorylation of Ser63 abolishes the activity at both ends. The effects of phosphorylation of individual serines correlated well with stathmin''s reduced abilities to form stable T2S complexes, to inhibit microtubule polymerization, and to bind to microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not alter the ability of stathmin to modulate dynamic instability at the microtubule ends, its ability to form a stable T2S complex, or its ability to bind to microtubules. The data further support the hypotheses that phosphorylation of stathmin on either Ser16 or Ser63 plays a critical role in regulating microtubule polymerization and dynamics in cells.  相似文献   

4.
5.
6.
The kinetochore, which consists of centromere DNA and structural proteins, is essential for proper chromosome segregation in eukaryotes. In budding yeast, Sgt1 and Hsp90 are required for the binding of Skp1 to Ctf13 (a component of the core kinetochore complex CBF3) and therefore for the assembly of CBF3. We have previously shown that Sgt1 dimerization is important for this kinetochore assembly mechanism. In this study, we report that protein kinase CK2 phosphorylates Ser361 on Sgt1, and this phosphorylation inhibits Sgt1 dimerization.The kinetochore is a structural protein complex located in the centromeric region of the chromosome coupled to spindle microtubules (1, 2). The kinetochore generates a signal to arrest cells during mitosis when it is not properly attached to microtubules, thereby preventing chromosome missegregation, which can lead to aneuploidy (3, 4). The molecular structure of the kinetochore complex of the budding yeast Saccharomyces cerevisiae has been well characterized; it is composed of more than 70 proteins, many of which are conserved in mammals (2).The centromere DNA in the budding yeast is a 125-bp region that contains three conserved regions, CDEI, CDEII, and CDEIII (5, 6). CDEIII (25 bp) is essential for centromere function (7) and is bound to a key component of the centromere, the CBF3 complex. The CBF3 complex contains four proteins, Ndc10, Cep3, Ctf13 (815), and Skp1 (14, 15), all essential for viability. Mutations in any of the CBF3 proteins abolish the ability of CDEIII to bind to CBF3 (16, 17). All of the kinetochore proteins, except the CDEI-binding Cbf1 (1820), localize to the kinetochores in a CBF3-dependent manner (2). Thus, CBF3 is a fundamental kinetochore complex, and its mechanism of assembly is of great interest.We have previously found that Sgt1 and Skp1 activate Ctf13; thus, they are required for assembly of the CBF3 complex (21). The molecular chaperone Hsp90 is also required to form the active Ctf13-Skp1 complex (22). Sgt1 has two highly conserved motifs that are required for protein-protein interaction: the tetratricopeptide repeat (21) and the CHORD protein and Sgt1-specific motif. We and others have found that both domains are important for the interaction of Sgt1 with Hsp90 (2326), which is required for assembly of the core kinetochore complex. This interaction is an initial step in kinetochore activation (24, 26, 27), which is conserved between yeast and humans (28, 29).We have recently shown that Sgt1 dimerization is important for Sgt1-Skp1 binding and therefore for kinetochore assembly (30). In this study, we have found that protein kinase CK2 phosphorylates Sgt1 at Ser361, and this phosphorylation inhibits Sgt1 dimerization. Therefore, CK2 appears to regulate kinetochore assembly negatively in budding yeast.  相似文献   

7.
Insulin receptor substrate-1 (IRS-1) is a highly phosphorylated adaptor protein critical to insulin and IGF-1 receptor signaling. Ser/Thr kinases impact the metabolic and mitogenic effects elicited by insulin and IGF-1 through feedback and feed forward regulation at the level of IRS-1. Ser/Thr residues of IRS-1 are also O-GlcNAc-modified, which may influence the phosphorylation status of the protein. To facilitate the understanding of the functional effects of O-GlcNAc modification on IRS-1-mediated signaling, we identified the sites of O-GlcNAc modification of rat and human IRS-1. Tandem mass spectrometric analysis of IRS-1, exogenously expressed in HEK293 cells, revealed that the C terminus, which is rich in docking sites for SH2 domain-containing proteins, was O-GlcNAc-modified at multiple residues. Rat IRS-1 was O-GlcNAc-modified at Ser914, Ser1009, Ser1036, and Ser1041. Human IRS-1 was O-GlcNAc-modified at Ser984 or Ser985, at Ser1011, and possibly at multiple sites within residues 1025–1045. O-GlcNAc modification at a conserved residue in rat (Ser1009) and human (Ser1011) IRS-1 is adjacent to a putative binding motif for the N-terminal SH2 domains of p85α and p85β regulatory subunits of phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2 (PTPN11). Immunoblot analysis using an antibody generated against human IRS-1 Ser1011 GlcNAc further confirmed the site of attachment and the identity of the +203.2-Da mass shift as β-N-acetylglucosamine. The accumulation of IRS-1 Ser1011 GlcNAc in HEPG2 liver cells and MC3T3-E1 preosteoblasts upon inhibition of O-GlcNAcase indicates that O-GlcNAcylation of endogenously expressed IRS-1 is a dynamic process that occurs at normal glucose concentrations (5 mm). O-GlcNAc modification did not occur at any known or newly identified Ser/Thr phosphorylation sites and in most cases occurred simultaneously with phosphorylation of nearby residues. These findings suggest that O-GlcNAc modification represents an additional layer of posttranslational regulation that may impact the specificity of effects elicited by insulin and IGF-1.Insulin receptor substrate-1 (IRS-1)1 is a highly phosphorylated adaptor protein critical to insulin and IGF-1 receptor signaling. Many of the metabolic and mitogenic effects elicited by insulin and IGF-1 are mediated and modulated by posttranslational modifications of IRS-1, and tight regulation at the posttranslational level is crucial for maintaining insulin sensitivity and controlling growth factor-induced proliferation. Following hormonal stimulation, IRS-1 is phosphorylated by the receptor tyrosine kinases creating SH2 domain docking sites for downstream binding partners including the p85 regulatory subunits of phosphatidylinositol 3-kinase, Grb2, and the tyrosine phosphatase SHP2 (PTPN11) (1). Binding of p85 phosphatidylinositol 3-kinase and Grb2 activate the PI3K/Akt and Ras-MAPK pathways, respectively, whereas binding of SHP2 results in tyrosine dephosphorylation and signal attenuation (2). Positive and negative feedback regulation by Ser/Thr kinases, such as Akt (3), c-Jun N-terminal kinase (JNK) (4), S6K (5), and ERK (6), impact the interactions of IRS-1 with SH2 domain proteins and the receptor thereby affecting the duration and outcome of the signal. IRS-1 has been described as a central node for the integration of information regarding the nutrient and stress status of the cell (7). This information is encoded by site-specific phosphorylation by a number of kinases that regulate the specificity of effects that are elicited following receptor stimulation. Many sites of Ser/Thr phosphorylation have been identified on IRS-1, and cross-talk among Tyr and Ser/Thr phosphorylations at specific residues is evidence of dynamic and complex posttranslational regulation (8, 9). Inappropriate phosphorylation of IRS-1 resulting in the disruption of interactions of IRS-1 with binding partners is implicated in the development of insulin resistance (10) and altered IGF-1 signaling in breast cancer tissue (11, 12).In addition to phosphorylation, Ser/Thr residues in IRS-1 are also dynamically modified by GlcNAc in a nutrient-responsive manner. As opposed to a negatively charged phosphate group, O-GlcNAcylation imparts a bulky, hydrophilic, electrostatically neutral moiety to Ser/Thr residues. The enzymes responsible for the incorporation and removal of the monosaccharide from proteins, O-GlcNAc-transferase and O-GlcNAcase, respectively, are localized in the cytoplasm and the nucleus of all eukaryotic cells (13, 14). Recent studies suggest that the activity of O-GlcNAc-transferase is regulated by insulin (15) and that localization of O-GlcNAc-transferase to the membrane is driven by direct association with phosphatidylinositide 3-phosphate (16). The abundance of O-GlcNAc modification on many proteins in the insulin signaling pathway increases with sustained high glucose and chronic insulin stimulation, and elevated O-GlcNAc modification of IRS-1 correlates with the development of insulin resistance in multiple cell types including 3T3-L1 adipocytes (17, 18), MIN6 pancreatic beta cells (19), Fao rat hepatoma cells (16), human aortic endothelial cells (20), and skeletal muscle (21). The impact of O-GlcNAcylation on insulin signaling and diabetic complications was reviewed recently (22, 23). The direct effect of O-GlcNAc modification on signaling via IRS-1 is not known because conditions that mimic those in the uncontrolled diabetic patient may also result in phosphorylation of IRS-1 at inhibitory sites (16, 24) and O-GlcNAc modification of other proteins in the insulin signaling pathway, such as the insulin receptor, Akt (18), FoxO (25), AMP-activated protein kinase (26), and β-catenin (17).To elucidate site-specific effects of O-GlcNAc modification on IRS-1-mediated signal transduction, we identified the sites of O-GlcNAc modification of rat and human IRS-1 by tandem mass spectrometry. To facilitate detection of the O-GlcNAc-modified peptides and assign the sites of modification, CID coupled with neutral loss-triggered MS3 and electron transfer dissociation (ETD) (27) tandem spectrometric approaches were used. Fragmentation of O-GlcNAc-modified peptides by ETD did not destroy the labile O-linkage (28) permitting direct detection of these peptides by the database searching algorithm ProteinProspector2 (29). O-GlcNAc modification occurred in close proximity to multiple SH2 domain binding motifs and within a region of IRS-1 shown previously to interact with the insulin and IGF-1 receptors (30).  相似文献   

8.
This study was conducted to elucidate the molecular mechanisms of thromboxane A2 receptor (TP)-induced insulin resistance in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) or mouse aortic endothelial cells to either IBOP or U46619, two structurally related thromboxane A2 mimetics, significantly reduced insulin-stimulated phosphorylation of endothelial nitric-oxide synthase (eNOS) at Ser1177 and Akt at Ser473. These effects were abolished by pharmacological or genetic inhibitors of TP. TP-induced suppression of both eNOS and Akt phosphorylation was accompanied by up-regulation of PTEN (phosphatase and tension homolog deleted on chromosome 10), Ser380/Thr382/383 PTEN phosphorylation, and PTEN lipid phosphatase activity. PTEN-specific small interference RNA restored insulin signaling in the face of TP activation. The small GTPase, Rho, was also activated by TP stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase inhibitor, rescued TP-impaired insulin signaling. Consistent with this result, pertussis toxin abrogated IBOP-induced dephosphorylation of both Akt and eNOS, implicating the Gi family of G proteins in the suppressive effects of TP. In mice, high fat diet-induced diabetes was associated with aortic PTEN up-regulation, PTEN-Ser380/Thr382/383 phosphorylation, and dephosphorylation of both Akt (at Ser473) and eNOS (at Ser1177). Importantly, administration of TP antagonist blocked these changes. We conclude that TP stimulation impairs insulin signaling in vascular endothelial cells by selectively activating the Rho/Rho-associated kinase/LKB1/PTEN pathway.Insulin exerts multiple biological actions relating to not only metabolism but also to endothelial functions (1, 2). Insulin has beneficial effects on the vasculature, primarily because of its ability to enhance endothelial nitric-oxide synthase (eNOS)2 activation and expression. These effects, in turn, enhance the bioavailability of nitric oxide (3), which engenders a wide array of antiatherogenic effects. Global insulin resistance is a key feature of the metabolic syndrome leading to cardiovascular disease. In an insulin-resistant state, a systemic deregulation of the insulin signal leads to a combined deregulation of insulin-regulated metabolism and endothelial functions (4), resulting in glucose intolerance and cardiovascular disease. Insulin resistance is associated with endothelial dysfunction (5), a hallmark of atherosclerosis, and predicts adverse cardiovascular events (6). Therefore, endothelium-specific insulin resistance (impaired insulin-stimulated phosphorylation of Akt and eNOS) may play an important role in the development of cardiovascular diseases.Prostanoids have critical roles in the development of endothelial dysfunction (7). Thromboxane A2 (TXA2) is believed to be a prime mediator of a variety of cardiovascular and pulmonary diseases such as atherosclerosis, myocardial infarction, and primary pulmonary hypertension. TXA2 perturbs the normal quiescent phenotype of endothelial cells (ECs). This results in leukocyte adhesion to the vessel wall as well as increased vascular permeability and expression of adhesion molecules on ECs, all important components of the inflammatory response. In smooth muscle cells, TXA2 promotes proliferation (8) and migration, contributing to neointima formation (9). TXA2 binds to the thromboxane A2 receptor (TP), which has two isoforms TPα and TPβ in human (1012), activation of which is implicated in atherosclerosis and inflammation (1316). Atherosclerosis is accelerated by diabetes and is associated with increased levels of TXA2 and other eicosanoids that stimulate TP (14). TP expression and plasma levels of TP ligands are elevated, both locally and systemically, in several vascular and thrombotic diseases (17). Importantly, TP activation induces EC apoptosis (15, 18) and prevents tube formation (19) by inhibiting Akt phosphorylation (18). TP activation also inhibits vascular endothelial growth factor-induced EC migration and angiogenesis by decreasing Akt and eNOS phosphorylation (20). However, the regulatory mechanisms underlying Akt inhibition by TP stimulation remain largely undefined. Moreover, whether TP activation impairs endothelial insulin signaling is also unclear.Here, we investigated whether TP ligands interfere with insulin signaling. Our results reveal that activation of TP using a potent and stable ligand (IBOP) abrogates insulin signaling in ECs. We also show that Rho/ROCK/LKB1-mediated PTEN (phosphatase and tensin homolog deleted on chromosome ten) up-regulation is required for TP-induced inhibition of insulin signaling in ECs.  相似文献   

9.
Phosphorylation is a major post-translational modification widely used in the regulation of many cellular processes. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase activated by activation subunit p35. Cdk5-p35 regulates various neuronal activities such as neuronal migration, spine formation, synaptic activity, and cell death. The kinase activity of Cdk5 is regulated by proteolysis of p35: proteasomal degradation causes down-regulation of Cdk5, whereas cleavage of p35 by calpain causes overactivation of Cdk5. Phosphorylation of p35 determines the proteolytic pathway. We have previously identified Ser8 and Thr138 as major phosphorylation sites using metabolic labeling of cultured cells followed by two-dimensional phosphopeptide mapping and phosphospecific antibodies. However, these approaches cannot determine the extent of p35 phosphorylation in vivo. Here we report the use of Phos-tag SDS-PAGE to reveal the phosphorylation states of p35 in neuronal culture and brain. Using Phos-tag acrylamide, the electrophoretic mobility of phosphorylated p35 was delayed because it is trapped at Phos-tag sites. We found a novel phosphorylation site at Ser91, which was phosphorylated by Ca2+-calmodulin-dependent protein kinase II in vitro. We constructed phosphorylation-dependent banding profiles of p35 and Ala substitution mutants at phosphorylation sites co-expressed with Cdk5 in COS-7 cells. Using the standard banding profiles, we assigned respective bands of endogenous p35 with combinations of phosphorylation states and quantified Ser8, Ser91, and Thr138 phosphorylation. The highest level of p35 phosphorylation was observed in embryonic brain; Ser8 was phosphorylated in all p35 molecules, whereas Ser91 was phosphorylated in 60% and Thr138 was phosphorylated in ∼12% of p35 molecules. These are the first quantitative and site-specific measurements of phosphorylation of p35, demonstrating the usefulness of Phos-tag SDS-PAGE for analysis of phosphorylation states of in vivo proteins.Phosphorylation is a major post-translational modification of proteins, modulating a variety of cellular functions (1, 2). Because most phosphorylation occurs in a highly site-specific manner, identification of phosphorylation sites has been a subject of intense investigation. Several analytical methods have been utilized to identify phosphorylation sites, including mass spectrometry, amino acid sequencing, and radioisotope phosphate labeling of proteins with mutation(s) at putative phosphorylation site(s) (3, 4). Phosphorylation site-specific antibodies are frequently used to detect phosphorylation at target sites (5, 6). Many phosphospecific antibodies are now commercially available. These phosphospecific antibodies are convenient and useful tools for examining site-specific phosphorylation both in vivo and in vitro. However, they are not appropriate for estimating quantitative ratios of phosphorylation states. Electrophoretic mobility shift on SDS-PAGE is also often used to observe phosphorylation (710), but this method is not always applied to site-specific phosphorylation.Phos-tag is a newly developed dinuclear metal complex that can be used to provide phosphate-binding sites when conjugated to analytical materials such as acrylamide and biotin (11). In SDS-PAGE using Phos-tag acrylamide, phosphorylated proteins are trapped by the Phos-tag sites, delaying their migration and thus separating them from unphosphorylated proteins. Subsequent immunoblot analysis with phosphorylation-independent antibodies reveals both the phosphorylated and unphosphorylated bands. Because the migration of the phosphorylated proteins is greatly delayed compared with migration in Laemmli SDS-PAGE, it is easy to identify the phosphorylated proteins from observed positions on blots. In the past 3 years, this method has been used to detect phosphorylation states for many proteins such as ERK1/2, cdc37, myosin light chain, eIF2α, protein kinase D, β-casein, SIRT7, and dysbindin-1 (1221).Cyclin-dependent kinase 5 (Cdk5)1 is a proline-directed serine/threonine kinase that is expressed predominantly in postmitotic neurons and regulates various neuronal events such as neuronal migration, spine formation, synaptic activity, and cell death (2224). Cdk5 is activated by binding to activation subunit p35 and inactivated by proteasomal degradation of p35 (25). In addition, Cdk5 activity is deregulated by cleavage of p35 to p25 with calpain, resulting in abnormal activation and ultimately causing neuronal cell death (2629). Proteolysis of p35, either by proteasomal degradation or cleavage by calpain, is regulated by phosphorylation of p35 by Cdk5 (3033). Therefore, phosphorylation of p35 is essential for proper regulation of Cdk5 activity and function. We previously identified Ser8 and Thr138 as major p35 phosphorylation sites (33). We also showed that phosphorylation of p35 decreased during brain development and proposed its relationship to age-dependent vulnerability of neurons to stress stimuli (32). Thus, to understand the in vivo regulation of Cdk5 activity, it is critical to analyze the phosphorylation states of p35 in brain. However, there is no convenient method to analyze the precise in vivo phosphorylation status of the endogenous proteins.In this study, we applied the Phos-tag SDS-PAGE method to analyze the phosphorylation states of p35 in vivo and in cultured neurons. We constructed standard band profiles of phosphorylated p35 by Phos-tag SDS-PAGE using Ala mutants at Ser8 and/or Thr138. From these experiments, we observed an unidentified in vivo phosphorylation site at Ser91. We quantified the phosphorylation at each site in cultured neurons and brain, providing the first quantitative estimate of the in vivo phosphorylation states of p35. We discuss the usefulness of Phos-tag SDS-PAGE to analyze the in vivo phosphorylation states of proteins.  相似文献   

10.
Bile acids have been reported to induce epidermal growth factor receptor (EGFR) activation and subsequent proliferation of activated hepatic stellate cells (HSC), but the underlying mechanisms and whether quiescent HSC are also a target for bile acid-induced proliferation or apoptosis remained unclear. Therefore, primary rat HSC were cultured for up to 48 h and analyzed for their proliferative/apoptotic responses toward bile acids. Hydrophobic bile acids, i.e. taurolithocholate 3-sulfate, taurochenodeoxycholate, and glycochenodeoxycholate, but not taurocholate or tauroursodeoxycholate, induced Yes-dependent EGFR phosphorylation. Simultaneously, hydrophobic bile acids induced phosphorylation of the NADPH oxidase subunit p47phox and formation of reactive oxygen species (ROS). ROS production was sensitive to inhibition of acidic sphingomyelinase, protein kinase Cζ, and NADPH oxidases. All maneuvers which prevented bile acid-induced ROS formation also prevented Yes and subsequent EGFR phosphorylation. Taurolithocholate 3-sulfate-induced EGFR activation was followed by extracellular signal-regulated kinase 1/2, but not c-Jun N-terminal kinase (JNK) activation, and stimulated HSC proliferation. When, however, a JNK signal was induced by coadministration of cycloheximide or hydrogen peroxide (H2O2), activated EGFR associated with CD95 and triggered EGFR-mediated CD95-tyrosine phosphorylation and subsequent formation of the death-inducing signaling complex. In conclusion, hydrophobic bile acids lead to a NADPH oxidase-driven ROS generation followed by a Yes-mediated EGFR activation in quiescent primary rat HSC. This proliferative signal shifts to an apoptotic signal when a JNK signal simultaneously comes into play.Hydrophobic bile acids play a major role in the pathogenesis of cholestatic liver disease and are potent inducers of hepatocyte apoptosis by triggering a ligand-independent activation of the CD952 death receptor (15). The underlying molecular mechanisms are complex and involve a Yes-dependent, but ligand-independent activation of the epidermal growth factor receptor (EGFR), which catalyzes CD95-tyrosine phosphorylation as a prerequisite for CD95 oligomerization, formation of the death-inducing signaling complex (DISC), and apoptosis induction (6, 7). Bile acids also activate EGFR in cholangiocytes (8) and activated hepatic stellate cells (HSC) (9), however, the mechanisms underlying bile acid-induced EGFR activation in HSC remained unclear (9). Surprisingly, bile acid-induced EGFR activation in HSC does not trigger apoptosis but results in a stimulation of cell proliferation (9). The behavior of quiescent HSC toward CD95 ligand (CD95L) is also unusual. CD95L, which is a potent inducer of hepatocyte apoptosis (1012), triggers activation of the EGFR in quiescent HSC, stimulates HSC proliferation, and simultaneously inhibits CD95-dependent death signaling through CD95-tyrosine nitration (13). Similar observations were made with other death receptor ligands, i.e. tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) (13). The mitogenic action of CD95L in quiescent, 1–2-day cultured HSC is because of a c-Src-dependent shedding of EGF and subsequent auto/paracrine activation of the EGFR (13). This unusual behavior of quiescent HSC toward death receptor ligands may relate to the recent findings that quiescent HSC might represent a stem/progenitor cell compartment in the liver with a capacity to differentiate not only into myofibroblasts but also toward hepatocyte- and endothelial-like cells (14). Thus, stimulation of HSC proliferation and resistance toward apoptosis in the hostile cytokine milieu accompanying liver injury may help HSC to play their role in liver regeneration. During cholestatic liver injury quiescent HSC are exposed to increased concentrations of circulating bile acids, but it is not known whether this may lead to HSC proliferation (as shown for activated HSC) (9), HSC apoptosis (as shown for hepatocytes) (17), or both of them. Therefore, the aim of the current study was (a) to identify the molecular mechanisms underlying bile acid-induced EGFR activation and (b) to elucidate whether bile acid-induced signaling can couple to both cell proliferation and cell death in quiescent HSC.The present study shows that cholestatic bile acids trigger a rapid NADPH oxidase activation in quiescent HSC, which leads to a Yes-mediated EGFR phosphorylation and HSC proliferation. In contrast to hepatocytes, hydrophobic bile acids do not induce a JNK signal in HSC. However, when JNK activation is induced by coadministration of either cycloheximide (CHX) or hydrogen peroxide (H2O2), the bile acid-induced mitogenic signal is shifted to an apoptotic one.  相似文献   

11.
12.
Epidermal growth factor (EGF) receptor (EGFR) overexpression is a hallmark of many cancers. EGFR endocytosis is a critical step in signal attenuation, raising the question of how receptor expression levels affect the internalization process. Here we combined quantitative experimental and mathematical modeling approaches to investigate the role of the EGFR expression level on the rate of receptor internalization. Using tetramethylrhodamine-labeled EGF, we established assays for quantifying EGF-triggered EGFR internalization by both high resolution confocal microscopy and flow cytometry. We determined that the flow cytometry approach was more sensitive for examining large populations of cells. Mathematical modeling was used to investigate the relationship between EGF internalization kinetics, EGFR expression, and internalization machinery. We predicted that the standard parameter used to assess internalization kinetics, the temporal evolution r(t) of the ratio of internalized versus surface-located ligand·receptor complexes, does not describe a straight line, as proposed previously. Instead, a convex or concave curve occurs depending on whether initial receptor numbers or internalization adaptors are limiting the uptake reaction, respectively. To test model predictions, we measured EGF-EGFR binding and internalization in cells expressing different levels of green fluorescent protein-EGFR. As expected, surface binding of rhodamine-labeled EGF increased with green fluorescent protein-EGFR expression level. Unexpectedly, internalization of ligand· receptor complexes increased linearly with increasing receptor expression level, suggesting that receptors and not internalization adaptors were limiting the uptake in our experimental model. Finally, determining the ratio of internalized versus surface-located ligand·receptor complexes for this cell line confirmed that it follows a convex curve, supporting our model predictions.The epidermal growth factor receptor (EGFR)3 belongs to the family of transmembrane receptor tyrosine kinases and mediates diverse actions, including proliferation, differentiation, and apoptosis (1, 2). Overexpression and/or mutations of the EGFR occur in ∼40% of neoblastomas (3) and correlate with poor prognosis (46). Unstimulated EGFR is located at the plasma membrane as a monomer and pre-formed dimer (7). Upon ligand binding, EGFR forms a dimer, and trans-phosphorylation occurs at specific residues of the cytoplasmic domain (8). Phosphorylated EGFR recruits adaptor proteins from which different conserved signaling pathways are activated, namely the MAPK (9), phosphatidylinositol 3-kinase, and protein kinase C pathways (10).Furthermore, activated EGFR recruits various adaptor proteins that mediate receptor internalization by endocytosis (2). Endocytosis occurs via the recruitment of adaptor proteins to phosphorylated tyrosine residues of the receptor and formation of membrane invaginations, which eventually pinch off to form internalized early endosomes (2, 11) (see Fig. 1). Both constitutive endocytosis and ligand-induced EGFR endocytosis are critical events in EGF signal regulation (2, 12). Endosomal EGFR can be transited back to the plasma membrane or to the late endosome/lysosome for degradation (2). As the majority of internalized receptors are targeted for lysosomal degradation upon EGF stimulation (13), endocytic entry of active EGFR is a crucial step for signal attenuation, which is also highlighted by the findings that impaired or delayed internalization is highly oncogenic (14, 15).Open in a separate windowFIGURE 1.Scheme of ligand-induced internalization. EGF binds membrane-located EGFR to give rise to surface-bound EGF·EGFR complex REs. Via diffusion events, the activated receptor binds internalization adaptors IC, which leads to internalized receptors Ri.In light of the role of endocytosis in EGFR signal attenuation and the oncogenicity of EGFR overexpression, it is important to elucidate the relationship between high receptor expression levels relative to internalization pathway capacity and their effect on internalization dynamics.Mathematical modeling is an important tool in elucidating EGFR signaling, at the level of EGFR internalization (1619) and, more recently, at the level of the integration of input signals into signaling events downstream of the EGFR, such as the MAPK cascade (20, 21). In earlier models, pioneering concepts such as the nonlinearity of the uptake reaction, because of the existence of alternative pathways that are entered with different affinities, were developed (16, 19). Also, the notion of saturability of the EGFR endocytosis system, in contrast to internalization of the transferrin receptor, for example, was introduced (18).Importantly, in mathematical formulations of EGFR endocytosis, the standard parameter used to estimate the rate of the internalization step (16) and to assess the effect of certain perturbations on internalization (2224) is the temporal evolution of the ratio of internalized versus surface-located ligand·receptor complexes r(t). In Refs. 16, 17, it was mathematically determined that, under certain assumptions, this ratio describes a straight line with the slope corresponding to the rate of the internalization step. These assumptions were as follows: (i) that the number of surface-bound ligand·receptor complexes (REs) remains approximately constant during the measurements, and (ii) that the internalization step is a first-order process, i.e. it is directly proportional to REs and independent of a potentially limiting availability of internalization adaptors.The presence of multiple endocytotic routes (23, 25) and different EGFR affinities for EGF (26) argue against first-order kinetics. Moreover, the possible limited capacity of internalization adaptors may restrict EGFR internalization in cells expressing abnormally high numbers of EGFR (18). In this work we investigated the potential of EGFR internalization to occur as a nonlinear process by combining mathematical modeling with novel quantitative, live cell measurements of EGF internalization.We extended the previous derivation of the ratio of internalized versus surface-located ligand·receptor complexes r(t) (16, 17, 19) by eliminating above assumptions i and ii, which allowed us to investigate in silico different scenarios for the shape of r(t) as a function of the relative concentrations of EGFR and internalization adaptors. We predicted that r(t) is not a straight line as derived previously but is a convex or concave curve depending on whether receptors or internalization components are limiting the reaction, respectively.In earlier studies, quantitative measurements of parameters of EGFR endocytosis have been performed using classical biochemical techniques to detect cellular ligand uptake using radioactively labeled EGF (16, 24, 27) or biotin-labeled EGF (28). Importantly, both methods do not reach single cell precision and instead yield an integrated signal over a population of cells. To test our mathematical predictions we combined the following: (i) quantitative laser scanning confocal microscopy, and (ii) multiple parametric flow cytometry, using a custom Beckman Coulter FC500 equipped with a 488 and 561 nm laser excitation, to quantitatively measure the temporal and spatial dynamics of EGFR endocytosis using tetramethylrhodamine-tagged EGF (Rh-EGF) and GFP-EGFR. We show that both quantitative imaging and flow cytometry measurements were highly sensitive, allowing for live cell investigations and confirmation of the mathematical predictions.  相似文献   

13.
14.
15.
16.
17.
Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) represents a mechanism for shaping intracellular Ca2+ signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca2+ release in cells that express predominantly InsP3R2. PKA is known to phosphorylate InsP3R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP3R2 in DT40-3KO cells that are devoid of endogenous InsP3R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca2+ signals and augmented the single channel open probability of InsP3R2. A PKA phosphorylation site unique to the InsP3R2 was identified at Ser937. The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser937, since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca2+ signaling following PKA activation in cells that express predominantly InsP3R2.Hormones, neurotransmitters, and growth factors stimulate the production of InsP33 and Ca2+ signals in virtually all cell types (1). The ubiquitous nature of this mode of signaling dictates that this pathway does not exist in isolation; indeed, a multitude of additional signaling pathways can be activated simultaneously. A prime example of this type of “cross-talk” between independently activated signaling systems results from the parallel activation of cAMP and Ca2+ signaling pathways (2, 3). Interactions between these two systems occur in numerous distinct cell types with various physiological consequences (36). Given the central role of InsP3R in Ca2+ signaling, a major route of modulating the spatial and temporal features of Ca2+ signals following cAMP production is potentially through PKA phosphorylation of the InsP3R isoform(s) expressed in a particular cell type.There are three InsP3R isoforms (InsP3R1, InsP3R2, and InsP3R3) expressed to varying degrees in mammalian cells (7, 8). InsP3R1 is the major isoform expressed in the nervous system, but it is less abundant compared with other subtypes in non-neuronal tissues (8). Ca2+ release via InsP3R2 and InsP3R3 predominate in these tissues. InsP3R2 is the major InsP3R isoform in many cell types, including hepatocytes (7, 8), astrocytes (9, 10), cardiac myocytes (11), and exocrine acinar cells (8, 12). Activation of PKA has been demonstrated to enhance InsP3-induced Ca2+ signaling in hepatocytes (13) and parotid acinar cells (4, 14). Although PKA phosphorylation of InsP3R2 is a likely causal mechanism underlying these effects, the functional effects of phosphorylation have not been determined in cells unambiguously expressing InsP3R2 in isolation. Furthermore, the molecular determinants of PKA phosphorylation of this isoform are not known.PKA-mediated phosphorylation is an efficient means of transiently and reversibly regulating the activity of the InsP3R. InsP3R1 was identified as a major substrate of PKA in the brain prior to its identification as the InsP3R (15, 16). However, until recently, the functional consequences of phosphorylation were unresolved. Initial conflicting results were reported indicating that phosphoregulation of InsP3R1 could result in either inhibition or stimulation of receptor activity (16, 17). Mutagenic strategies were employed by our laboratory to clarify this discrepancy. These studies unequivocally assigned phosphorylation-dependent enhanced Ca2+ release and InsP3R1 activity at the single channel level, through phosphorylation at canonical PKA consensus motifs at Ser1589 and Ser1755. The sites responsible were also shown to be specific to the particular InsP3R1 splice variant (18). These data were also corroborated by replacing the relevant serines with glutamates in a strategy designed to construct “phosphomimetic” InsP3R1 by mimicking the negative charge added by phosphorylation (19, 20). Of particular note, however, although all three isoforms are substrates for PKA, neither of the sites phosphorylated by PKA in InsP3R1 are conserved in the other two isoforms (21). Recently, three distinct PKA phosphorylation sites were identified in InsP3R3 that were in different regions of the protein when compared with InsP3R1 (22). To date, no PKA phosphorylation sites have been identified in InsP3R2.Interactions between Ca2+ and cAMP signaling pathways are evident in exocrine acinar cells of the parotid salivary gland. In these cells, both signals are important mediators of fluid and protein secretion (23). Multiple components of the [Ca2+]i signaling pathway in these cells are potential substrates for modulation by PKA. Previous work from this laboratory established that activation of PKA potentiates muscarinic acetylcholine receptor-induced [Ca2+]i signaling in mouse and human parotid acinar cells (4, 24, 25). A likely mechanism to explain this effect is that PKA phosphorylation increases the activity of InsP3R expressed in these cells. Consistent with this idea, activation of PKA enhanced InsP3-induced Ca2+ release in permeabilized mouse parotid acinar cells and also resulted in the phosphorylation of InsP3R2 (4).Invariably, prior work examining the functional effects of PKA phosphorylation on InsP3R2 has been performed using cell types expressing multiple InsP3R isoforms. For example, AR4-2J cells are the preferred cell type for examining InsP3R2 in relative isolation, because this isoform constitutes more than 85% of the total InsP3R population (8). InsP3R1, however, contributes up to ∼12% of the total InsP3R in AR4-2J cells. An initial report using InsP3-mediated 45Ca2+ flux suggested that PKA activation increased InsP3R activity in AR4-2J cells (21). A similar conclusion was made in a later study, which documented the effects of PKA activation on agonist stimulated Ca2+ signals in AR4-2J cells (26). Any effects of phosphorylation observed in these experiments could plausibly have resulted from phosphorylation of the residual InsP3R1.Although PKA enhances InsP3-induced calcium release in cells expressing predominantly InsP3R2, including hepatocytes, parotid acinar cells, and AR4-2J cells (4, 13, 21, 26, 27), InsP3R2 is not phosphorylated at stoichiometric levels by PKA (21). This observation has called into question the physiological significance of PKA phosphorylation of InsP3R2 (28). The apparent low levels of InsP3R2 phosphorylation are clearly at odds with the augmented Ca2+ release observed in cells expressing predominantly this isoform. The equivocal nature of these findings probably stems from the fact that, to date, all of the studies demonstrating positive effects of PKA activation on Ca2+ release were conducted in cells that also express InsP3R1. The purpose of the current experiments was to analyze the functional effects of phosphorylation on InsP3R2 expressed in isolation on a null background. We report that InsP3R2 activity is increased by PKA phosphorylation under these conditions, and furthermore, we have identified a unique phosphorylation site in InsP3R2 at Ser937. In total, these results provide a direct mechanism for the cAMP-induced activation of InsP3R2 via PKA phosphorylation of InsP3R2.  相似文献   

18.
19.
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is well characterized for its role in antagonizing the phosphoinositide 3-kinase pathway. Previous studies using size-exclusion chromatography demonstrated PTEN recruitment into high molecular mass complexes and hypothesized that PTEN phosphorylation status and PDZ binding domain may be required for such complex formation. In this study, we set out to test the structural requirements for PTEN complex assembly and identify the component(s) of the PTEN complex(es). Our results demonstrated that the PTEN catalytic function and PDZ binding domain are not absolutely required for its complex formation. On the other hand, PTEN phosphorylation status has a significant impact on its complex assembly. Our results further demonstrate enrichment of the PTEN complex in nuclear lysates, suggesting a mechanism through which PTEN phosphorylation may regulate its complex assembly. These results prompted further characterization of other protein components within the PTEN complex(es). Using size-exclusion chromatography and two-dimensional difference gel electrophoresis followed by mass spectrometry analysis, we identified heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a novel protein recruited to higher molecular mass fractions in the presence of PTEN. Further analysis indicates that endogenous hnRNP C and PTEN interact and co-localize within the nucleus, suggesting a potential role for PTEN, alongside hnRNP C, in RNA regulation.Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)4 was cloned in 1997 (13) and has been well characterized for its tumor-suppressive role by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate to phosphatidylinositol 4,5-bisphosphate and antagonizing the phosphoinositide 3-kinase pathway (47). PTEN also regulates cell migration, cell cycle progression, DNA damage response, and chromosome stability independently of its lipid phosphatase activity through its potential protein phosphatase activity and/or protein-protein interaction (811) (for recent reviews, see 1214).PTEN is composed of an N-terminal catalytic domain and a C-terminal regulatory domain. The catalytic domain contains a conserved signature motif (HCXXGXXR) found in dual-specific protein phosphatases, and mutations within this catalytic domain, including the C124S mutation, are known to abrogate PTEN catalytic activity (4). The C terminus of PTEN contains a PDZ (PDS-95/Disc-large/Zo-1) binding domain, which interacts with PDZ-containing proteins such as MAGI-1b, MAGI-2, MAGI-3, hDLG, hMAST and NHERF (1519). In addition to the PDZ binding domain, several key serine and threonine phosphorylation sites (Ser380, Thr382, Thr383, and Ser385) at the PTEN C terminus are reported to play an important role in regulating its stability, localization, and activity (2026).Recent studies suggest that PTEN may function within higher molecular mass complexes. Through size-exclusion chromatography, Vazquez et al. (27) demonstrated that PTEN can be separated into two populations: a monomeric hyperphosphorylated subpopulation and a higher molecular mass hypophosphorylated subpopulation. It was hypothesized that PTEN in its dephosphorylated form can interact with PDZ-containing proteins such as hDLG and be recruited into a higher molecular mass complex. Although the components within PTEN complex(es) have not been systematically studied and purified, MAGI-2, hDLG (27), NHERF2, PDGFR (19), NEP (28), and MVP (29) have been identified as potential components of the PTEN complex using the same size-exclusion chromatography methodology.In this paper, we aim to (i) investigate the essential elements of PTEN required for its complex formation and (ii) dissect the components of the PTEN-associated complex(es). Our results indicate that PTEN catalytic activity or its PDZ binding domain is not absolutely required for complex assembly. PTEN phosphorylation status on amino acids Ser380, Thr382, Thr383, and Ser385, on the other hand, has a significant role in complex formation. In addition, we demonstrate that the PTEN complex is enriched in nuclear lysates, which suggests a mechanism through which phosphorylation can regulate complex assembly. Using two-dimensional difference gel electrophoresis (DIGE) analysis and comparing proteins present in higher molecular mass fractions in the presence and absence of PTEN followed by mass spectrometry analysis, we have identified heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a potential component within the PTEN complex. PTEN and hnRNP C are shown here to interact and co-localize in the nucleus. We hypothesize that the PTEN and hnRNP C complex may play a role in RNA regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号