首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Summary We describe a new polychrome stain and simultaneous methods of histological, histochemical and immunocytochemical staining performed on sections from human tissues embedded in the new hydrophilic resin Bioacryl. The polychrome stain involves the sequential use of Harris' Haematoxylin, silver methenamine, Light Green and Eosin or Safranin dyes and provides a highly specific visualization of the overall cytological tissue architecture. When histochemical, immunocytochemical, and polychrome stains are performed together on the same section, crisp images are obtained, yielding simultaneous data of histochemical and immunological reactivities with clear tissue architecture.  相似文献   

2.
Summary Paraffin sections of rat tissue fixed in either formaldehyde solution (3.6% w/v) or in Carnoy's fluid were stained using standardized Methyl Green—Pyronin procedures with the dyes used either simultaneously or in sequence. The sections were evaluated for the uptake of the two dyes by cell nuclei, nucleoli and cytoplasm using colour TV-image analysis. The parameters measured were integrated optical density and the surface area of the object. The sections were then destained and a Feulgen reaction was performed. The coordinates of the cells measured after the simultaneous Methyl Green—Pyronin method were stored in the computer, making it possible to measure the same cells in the Feulgen-restained sections. Image analysis gave results which invalidate the sequential methods as opposed to the simultaneous method. Mean optical densities were significantly increased for both dyes with the simultaneous method after formaldehyde fixation as compared to Carnoy fixation. The quantitative correlation of Methyl Green and DNA in the simultaneous technique was found to parallel exactly that of the Feulgen stain. In conclusion, the simultaneous Methyl Green—Pyronin technique is recommended while the sequential methods seem to be of less value.  相似文献   

3.
Bioorthogonal ‘click’ reactions have recently emerged as promising tools for chemistry and biological applications. By using a combination of two different ‘click’ reactions, ‘double-click’ strategies have been developed to attach multiple labels onto biomacromolecules. These strategies require multi-step modifications of the biomacromolecules that can lead to heterogeneity in the final conjugates. Herein, we report the synthesis and characterization of a set of three trifunctional linkers. The linkers having alkyne and cyclooctyne moieties that are capable of participating in sequential copper(I)-catalyzed and copper-free cycloaddition reactions with azides. We have also prepared a linker comprised of an alkyne and a 1,2,4,5-terazine moiety that allows for simultaneous cycloaddition reactions with azides and trans-cyclooctenes, respectively. These linkers can be attached to synthetic or biological macromolecules to create a platform capable of sequential or parallel ‘double-click’ labeling in biological systems. We show this potential using a generation 5 (G5) polyamidoamine (PAMAM) dendrimer in combination with the clickable linkers. The dendrimers were successfully modified with these linkers and we demonstrate both sequential and parallel ‘double-click’ labeling with fluorescent reporters. We anticipate that these linkers will have a variety of application including molecular imaging and monitoring of macromolecule interactions in biological systems.  相似文献   

4.
We have developed a highly sensitive stain for visualizing proteins in polyacrylamide gels. Our modification of the procedure for de Olmos' neural, cupric-silver stain is 100 times more sensitive than the conventional Coomassie blue stain (e.g., detection of 0.38 vs 38 ng/mm2 of serum albumin), and is comparable to the sensitivity attained with an autoradiogram of 14C-methylated proteins following a 5-day exposure. This silver stain will be especially useful for analysis of patterns of proteins from tissue where attainment of the high specific activity of isotope labeling which is necessary to detect minor protein components is expensive, technically difficult or, as in humans, prohibited. In preliminary results with material such as unconcentrated cerebrospinal fluid, the silver stain revealed a complex pattern of proteins not visible with Coomassie blue.  相似文献   

5.
Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis.  相似文献   

6.
Synopsis The Haematoxylin-Basic Fuchsin-picric acid (HBFP) stain, a new non-enzymatic histochemical technique described previously to detect early myocardial ischemia, was applied to skeletal muscle. Several factors were found which have an important effect on HBFP positivity including ageing in room air of unstained tissue sections, and the precise timing of the differentiation step of this stain. Using carefully standardized techniques, repeatable staining was obtained and a high level of inter-observer consistency in the interpretation of staining results was achieved. Although the technical requirements of this new stain are rigorous, it offers promise and deserves further evaluation in the study of skeletal as well as cardiac muscle disorders. The histological advantages include vivid contrasts and the ability to use the stain on formalin-fixed paraffin-embedded muscle tissue.  相似文献   

7.
Laser capture microdissection (LCM) is a powerful tool that enables the isolation of specific cell types from tissue sections, overcoming the problem of tissue heterogeneity and contamination. This study combined the LCM with isotope-coded affinity tag (ICAT) technology and two-dimensional liquid chromatography to investigate the qualitative and quantitative proteomes of hepatocellular carcinoma (HCC). The effects of three different histochemical stains on tissue sections have been compared, and toluidine blue stain was proved as the most suitable stain for LCM followed by proteomic analysis. The solubilized proteins from microdissected HCC and non-HCC hepatocytes were qualitatively and quantitatively analyzed with two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) alone or coupled with cleavable ICAT labeling technology. A total of 644 proteins were qualitative identified, and 261 proteins were unambiguously quantitated. These results show that the clinical proteomic method using LCM coupled with ICAT and 2D-LC-MS/MS can carry out not only large-scale but also accurate qualitative and quantitative analysis.  相似文献   

8.
Abstract

Tandem dimer Tomato (tdTomato) provides a useful alternative to enhanced green fluorescent protein (eGFP) for performing simultaneous detection of fluorescent protein in histological sections together with fluorescence immunohistochemistry (IHC). eGFP has many properties that make it useful for cell labeling; however, during simultaneous fluorescence IHC, the usefulness of eGFP may be limited. This limitation results from a fixation step required to identify eGFP in histological tissue sections that can mask antibody epitopes and adversely affect staining intensity. An alternative fluorescent protein, tdTomato, may assist concurrent detection of fluorescent protein within tissue sections and fluorescence IHC, because detection of tdTomato does not require tissue fixation. Tissue sections were obtained from various organs of mice ubiquitously expressing eGFP or tdTomato that were either unfixed or fixed with 4% paraformaldehyde. These tissues later were combined with fluorescence IHC. Both eGFP and tdTomato displayed robust signals in fixed frozen sections. Only tdTomato fluorescence, however, was detected in unfixed frozen sections. Simultaneous detection of fluorescence IHC and fluorescent protein in histological sections was observed only in unfixed frozen tdTomato tissue. For this reason, tdTomato is a useful substitute for eGFP for cell labeling when simultaneous fluorescence IHC is required.  相似文献   

9.
A Scott  S Wyatt  P L Tsou  D Robertson  N S Allen 《BioTechniques》1999,26(6):1125, 1128-1125, 1132
The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.  相似文献   

10.
11.
Deformation of lipid droplets in fixed samples   总被引:6,自引:5,他引:1  
Nile red, Sudan III, and oil red O have been used to stain lipid droplets (LDs) for fluorescence microscopy. We noticed that LDs labeled by Nile red are different in appearance from those stained by the latter two dyes. To understand the cause of the difference, we used sequential labeling procedures (first LD stain-photography-quenching-second LD stain-photography), and examined the effect of several factors. Immunofluorescence labeling for adipose differentiation-related protein (ADRP), an LD marker, was also observed comparatively with the lipid stains. As a result, we found that ethanol and isopropanol used for Sudan III and oil red O staining, respectively, and glycerol used for mounting, cause fusion of adjacent LDs even in glutaraldehyde-fixed samples. By the same treatment, immunofluorescence labeling for ADRP was dislocated to the rim of large LDs that were formed as a result of the artifactual fusion. The result indicates that the LD structure can be better observed with Nile red than with Sudan III or oil red O.  相似文献   

12.
13.
Recombinase-mediated cassette exchange, or RMCE, is a clean approach of gene delivery into a desired chromosomal location, as it is able to insert only the required sequences, leaving behind the unwanted ones. RMCE can be mediated by a single site-specific DNA recombinase or by two recombinases with different target specificities (dual RMCE). Recently, using the Flp–Cre recombinase pair, dual RMCE proved to be efficient, provided the relative ratio of the enzymes during the reaction is optimal. In the present report, we analyzed how the efficiency of dual RMCE mediated by the Flp–Int (HK022) pair depends on the variable input of the recombinases—the amount of the recombinase expression vectors added at transfection—and on the order of the addition of these vectors: sequential or simultaneous. We found that both in the sequential and the simultaneous modes, the efficiency of dual RMCE was critically dependent on the absolute and the relative concentrations of the Flp and Int expression vectors. Under optimal conditions, the efficiency of ‘simultaneous’ dual RMCE reached ∼12% of the transfected cells. Our results underline the importance of fine-tuning the reaction conditions for achieving the highest levels of dual RMCE.  相似文献   

14.
The uteri of five mares were removed and endometrial samples were procured from 12 specific locations in the uteri and the samples were processed and duplicate sections were stained with hematoxylin and eosin (H&E) or Masson's trichrome stains. The samples were interpreted in a blind manner by one person, and pathologic changes were classified according to Kenney (1). An assessment of stromal fibrous connective tissue and focal periglandular fibrosis or fibrotic nests was made. There were no significant differences in luminal epithelial cell heights or in the occurrence and severity of stromal fibrous connective tissue, focal periglandular fibrosis, or lymphatic lacunae among locations (P > 0.05). There was an effect of location on the occurrence and severity of inflammation (P < 0.05). If only inflammation was considered in categorization, this would have resulted in changing the category in 9 of 60 samples. There was no increase in tendency for inflammation, fibrosis or lymphatic lacunae to occur in the horns versus the body of the uterus, nor of the dorsal versus the ventral uterus (P > 0.05). There was no effect (P > 0.05) of type of stain on the ability to detect incidence and severity of focal periglandular fibrosis. There was an effect (P < 0.05) of type of stain on the ability to detect the incidence and severity of stromal fibrous connective tissue. The use of the trichrome stain showed slightly increased distribution of stromal fibrous connective tissue.  相似文献   

15.
Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications.  相似文献   

16.
The proteome undergoes complex changes in response to disease, drug treatment, and normal cellular signaling processes. Characterization of such changes requires methods for time-resolved protein identification and imaging. Here, we describe the application of two reactive methionine (Met) analogues, azidohomoalanine (Aha) and homopropargylglycine (Hpg), to label two protein populations in fixed cells. Reactive lissamine rhodamine (LR), 7-dimethylaminocoumarin (DMAC), and bodipy-630 (BDPY) dyes were prepared and examined for use in selective dye-labeling of newly synthesized proteins in Rat-1 fibroblasts. The LR and DMAC, but not BDPY, fluorophores were found to enable selective, efficient labeling of subsets of the proteome; cells labeled with Aha and Hpg exhibited fluorescence emission three- to sevenfold more intense than that of control cells treated with Met. We also examined simultaneous and sequential pulse-labeling of cells with Aha and Hpg. After pulse-labeling, cells were treated with reactive LR and DMAC dyes, and labeled cells were imaged by fluorescence microscopy and analyzed by flow cytometry. The results of these studies demonstrate that amino acid labeling can be used to achieve selective two-color imaging of temporally defined protein populations in mammalian cells.  相似文献   

17.
Mitochondria are key regulators of cellular energy and are the focus of a large number of studies examining the regulation of mitochondrial dynamics and biogenesis in healthy and diseased conditions. One approach to monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication. We developed a sensitive technique to visualize newly synthesized mtDNA in individual cells to study mtDNA replication within subcellular compartments of neurons. The technique combines the incorporation of 5-bromo-2-deoxyuridine (BrdU) and/or 5-ethynyl-2′-deoxyuridine (EdU) into mtDNA, together with a tyramide signal amplification protocol. Employing this technique, we visualized and measured mtDNA biogenesis in individual cells. The labeling procedure for EdU allows for more comprehensive results by allowing the comparison of its incorporation with other intracellular markers, because it does not require the harsh acid or enzyme digests necessary to recover the BrdU epitope. In addition, the utilization of both BrdU and EdU permits sequential pulse–chase experiments to follow the intracellular localization of mtDNA replication. The ability to quantify mitochondrial biogenesis provides an essential tool for investigating the alterations in mitochondrial dynamics involved in the pathogenesis of multiple cellular disorders, including neuropathies and neurodegenerative diseases. (J Histochem Cytochem 58:207–218, 2010)  相似文献   

18.
A histological stain prepared from the heartwood of Pterocarpus santalinus Linn. has been found to be an excellent nuclear stain for various cells of animal and plant origin. As an elastic tissue stain, the results are comparable to standard elastic tissue stains. The striations of voluntary muscle fibers are well shown. The Nissl granules and fibers of cranial nerves in the pons are visualized. When counterstained with light green, it differentially stains muscle and fibrous tissue. The stain can be used as counterstain with certain histochemical procedures with satisfactory results. The preparation and use of this versatile stain are described.  相似文献   

19.
A novel thermodynamically-balanced inside-out (TBIO) method of primer design was developed and compared with a thermodynamically-balanced conventional (TBC) method of primer design for PCR-based gene synthesis of codon-optimized gene sequences for the human protein kinase B-2 (PKB2; 1494 bp), p70 ribosomal S6 subunit protein kinase-1 (S6K1; 1622 bp) and phosphoinositide-dependent protein kinase-1 (PDK1; 1712 bp). Each of the 60mer TBIO primers coded for identical nucleotide regions that the 60mer TBC primers covered, except that half of the TBIO primers were reverse complement sequences. In addition, the TBIO and TBC primers contained identical regions of temperature- optimized primer overlaps. The TBC method was optimized to generate sequential overlapping fragments (~0.4–0.5 kb) for each of the gene sequences, and simultaneous and sequential combinations of overlapping fragments were tested for their ability to be assembled under an array of PCR conditions. However, no fully synthesized gene sequences could be obtained by this approach. In contrast, the TBIO method generated an initial central fragment (~0.4–0.5 kb), which could be gel purified and used for further inside-out bidirectional elongation by additional increments of 0.4–0.5 kb. By using the newly developed TBIO method of PCR-based gene synthesis, error-free synthetic genes for the human protein kinases PKB2, S6K1 and PDK1 were obtained with little or no corrective mutagenesis.  相似文献   

20.
A histological stain prepared from the heartwood of Pterocarpus santalinus Linn, has been found to be an excellent nuclear stain for various cells of animal and plant origin. As an elastic tissue stain, the results are comparable to standard elastic tissue stains. The striations of voluntary muscle fibers are well shown. The Nissl granules and fibers of cranial nerves in the pons are visualized. When counterstained with light green, it differentially stains muscle and fibrous tissue. The stain can be used as counterstain with certain histochemical procedures with satisfactory results. The preparation and use of this versatile stain are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号