首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
STIM1 and Orai1 have been reported to interact upon store depletion culminating in Ca2+ release-activated Ca2+ current activation. Recently, the essential region has been identified within the STIM1 C terminus that includes the second coiled-coil domain C-terminally extended by ∼50 amino acids and exhibits a strong binding to the Orai1 C terminus. Based on the homology within the Orai family, an analogous scenario might be assumed for Orai2 as well as Orai3 channels as both are activated in a similar STIM1-dependent manner. A combined approach of electrophysiology and Foerster resonance energy transfer microscopy uncovered a general mechanism in the communication of STIM1 with Orai proteins that involved the conserved putative coiled-coil domains in the respective Orai C terminus and the second coiled-coil motif in the STIM1 C terminus. A coiled-coil single mutation in the Orai1 C terminus abrogated communication with the STIM1 C terminus, whereas an analogous mutation in Orai2 and Orai3 still allowed for their moderate activation. However, increasing coiled-coil probability by a gain of function deletion in Orai1 or by generating an Orai1-Orai3 chimera containing the Orai3 C terminus recovered stimulation to a similar extent as with Orai2/3. At the level of STIM1, decreasing probability of the second coiled-coil domain by a single mutation within the STIM1 C terminus abolished activation of Orai1 but still enabled partial stimulation of Orai2/3 channels. A double mutation within the second coiled-coil motif of the STIM1 C terminus fully disrupted communication with all three Orai channels. In aggregate, the impairment in the overall communication between STIM1 and Orai channels upon decreasing probabilities of either one of the putative coiled-coil domains in the C termini might be compatible with the concept of their functional, heteromeric interaction.Store-operated Ca2+ entry is a key to cellular regulation of short term responses such as contraction and secretion as well as long term processes like proliferation and cell growth (1). The prototypic and best characterized store-operated channel is the Ca2+ release-activated Ca2+ (CRAC)5 channel (26). However, its molecular components have remained elusive until 4 years ago; the STIM1 (stromal interacting molecule 1) (7, 8) and later on Orai1 (911) have been identified as the two limiting components for CRAC activation. STIM1 is an ER-located Ca2+ sensor, and store depletion triggers its aggregation into punctae close to the plasma membrane, resulting in stimulation of CRAC currents (12, 13). Its N terminus is located in the ER lumen and contains an EF-hand Ca2+-binding motif, which senses the ER Ca2+ level, and a sterile α-motif, which is suggested to mediate homomeric STIM1 aggregation (1416). In the cytosolic STIM1 C terminus, two coiled-coil regions overlapping with the ezrin-radixin-moesin-like domain and a lysine-rich region are essential for CRAC activation (14, 17, 18). Three recent studies have independently identified the ezrin-radixin-moesin domain as the essential Orai activating domain, named SOAR (STIM1 Orai-activating region) (20) which represents so far the shortest active fragment, OASF (Orai-activating small fragment) (21) or CAD (CRAC-activating domain) (22), which includes the second, more C terminally located coiled-coil domain and the following ∼55 amino acids. The latter amino acids are suggested to contain an additional cytosolic homomerization domain indispensable for OASF homomerization and Orai activation (21).The Orai family includes three highly Ca2+-selective ion channels (Orai1–3) that locate to the plasma membrane, and each protein contains four predicted transmembrane segments with cytosolic N and C termini (10). All three Orai proteins possess a conserved putative coiled-coil domain in the C terminus (23, 24), whereas only the N terminus of Orai1 consists of a proline/arginine-rich region (25). Orai1 has been assumed to act in concert with STIM1 (10, 27)-activating inward Ca2+ currents after store depletion. The two other members of the Orai family, Orai2 and Orai3, display similar but smaller store-operated inward Ca2+ currents when co-expressed with STIM1 with distinct inactivation profiles, permeability properties, and 2-aminoethoxydiphenyl borate sensitivity (2832). Recently, we have provided evidence for a store depletion-induced, dynamic coupling of STIM1 to Orai1 that involves the putative coiled-coil domain in the C terminus of Orai1 (33). Furthermore, the C terminus of STIM1, in particular the essential cytosolic region 344–442 as narrowed down by SOAR, OASF, and CAD (2022), has been established as the key fragment for CRAC as well as Orai1 activation, because its expression alone, without the necessity to deplete ER store, is sufficient for constitutive current activation (18, 32, 33). These fragments SOAR, OASF, and CAD when co-expressed with Orai1 (2022) exhibit enhanced plasma membrane localization in comparison with the complete STIM1 C terminus in the presence of Orai1. Specificity of interaction of SOAR to the Orai1 C terminus has been shown by its disruption (20) employing the Orai1 L273S mutant (33). Park et al. (22) have provided additional, conclusive evidence for a direct binding by combining multiple biochemical approaches demonstrating CAD interaction with Orai1.This study focused specifically on the role of the putative coiled-coil domains of STIM1 as well as Orai proteins in their coupling. Coiled-coils generally function as protein-protein interaction sites with the ability of dynamic protein assembly and disassembly (3537). We suggest the C-terminal, putative coiled-coil domains in all three Orai proteins and the second coiled-coil motif of STIM1 as essential for STIM1/Orai communication. Moreover, the single point coiled-coil STIM1 L373S mutant allowed for differential activation of Orai channels partially stimulating Orai2 as well as Orai3 but not Orai1.  相似文献   

2.
STIM1 and STIM2 are dynamic transmembrane endoplasmic reticulum Ca2+ sensors, coupling directly to activate plasma membrane Orai Ca2+ entry channels. Despite extensive sequence homology, the STIM proteins are functionally distinct. We reveal that the short variable N-terminal random coil sequences of STIM1 and STIM2 confer profoundly different activation properties. Using Orai1-expressing HEK293 cells, chimeric replacement of the 43-amino-acid STIM1 N terminus with that of STIM2 attenuates Orai1-mediated Ca2+ entry and drastically slows store-induced Orai1 channel activation. Conversely, the 55-amino-acid STIM2 terminus substituted within STIM1 strikingly enhances both Orai1-mediated Ca2+ entry and constitutive coupling to activate Orai1 channels. Hence, STIM N termini are powerful coupling modifiers, functioning in STIM2 to “brake” the otherwise constitutive activation of Orai1 channels afforded by its high sensitivity to luminal Ca2+.The transmembrane ER4 proteins STIM1 and STIM2 function as sensors of Ca2+ within ER stores (1, 2). Depletion of luminal Ca2+ within the ER triggers aggregation and translocation of STIMs into junctions closely associated with the plasma membrane, where they activate the highly Ca2+-selective Orai family of store-operated channels (SOCs) via conformational coupling (38). Recent investigations of the cytoplasmic portion of STIM1 revealed that it alone is sufficient to activate Orai (912) via a short (∼100 amino acids) region centered around the second coiled-coil domain (see Fig. 1) (1315). However, although activation of Orai1 is mediated entirely within the C-terminal portion of STIM, physiological control of STIM1 and STIM2 is exerted via their N-terminal ER-luminal Ca2+-sensing domains. The extent to which structural differences between these domains in STIM1 and STIM2 contribute to their distinct properties (1619) remains poorly understood. Although STIM2 has the capacity to sense ER Ca2+ and activate SOCs (16, 17, 19), overexpressed STIM2 inhibits endogenous SOCs (18). Moreover, the kinetics of SOC activation by STIM2 are much slower than STIM1 (17). STIM2 was recently revealed to have a decreased Ca2+-sensing affinity when compared with STIM1 by virtue of three amino acid substitutions in the Ca2+-binding EF-hand domain (16). Although the lower affinity of the STIM2 EF-hand accounts for differences in the activation thresholds of STIM1 and STIM2 (16, 20, 21), it does not explain the slow kinetics of STIM2 nor its dominance over endogenous SOC activation. However, recent investigations reveal similar abilities of the cytosolic portions of STIM1 and STIM2 to activate Orai1 (12). Hence, although activation of Orai1 is mediated entirely within the C-terminal portion of STIM, physiological control of STIM1 and STIM2 is exerted via their N-terminal ER-luminal Ca2+-sensing domains.Open in a separate windowFIGURE 1.Schematic diagram depicting the domain structure of STIM1, STIM2, and STIM chimeras. The currently defined domains of STIM1 and STIM2 are depicted as canonical (cEF) and hidden (hEF) EF-hands, SAM domains, transmembrane domains (TM), coiled-coil structures, a proline-rich domain (P), and a polybasic tail (K). The sequences of the STIM1 and STIM2 N-terminal domains were aligned using the lalign program and depicted with red indicating identical amino acids and blue indicating similarity.The initial triggering events for STIM1 and STIM2 proteins involve the unfolding and aggregation of the N-terminal domains resulting from dissociation of Ca2+ from the luminal EF-hand Ca2+ binding domains (2023). Recent evidence reveals that this unfolding is much slower for the N terminus of STIM2 than for STIM1 (21). Although most of the N termini of STIM1 and STIM2 are highly homologous, significant variability exists in the first 60 N-terminal amino acids upstream from the EF-hands, comprising a flexible random coil domain (21). Intriguingly, these upstream sequences appear to markedly modify the stability of the N-terminal domains of STIM1 and STIM2 (21). We reveal here that these sequences confer profound distinctions between STIM1 and STIM2 in their coupling to activate SOCs. In STIM2, this domain acts as a powerful “brake” to restrict constitutive activation of SOCs, occurring as a result of its high sensitivity to luminal Ca2+.  相似文献   

3.
STIM1 and ORAI1, the two limiting components in the Ca2+ release-activated Ca2+ (CRAC) signaling cascade, have been reported to interact upon store depletion, culminating in CRAC current activation. We have recently identified a modulatory domain between amino acids 474 and 485 in the cytosolic part of STIM1 that comprises 7 negatively charged residues. A STIM1 C-terminal fragment lacking this domain exhibits enhanced interaction with ORAI1 and 2–3-fold higher ORAI1/CRAC current densities. Here we focused on the role of this CRAC modulatory domain (CMD) in the fast inactivation of ORAI1/CRAC channels, utilizing the whole-cell patch clamp technique. STIM1 mutants either with C-terminal deletions including CMD or with 7 alanines replacing the negative amino acids within CMD gave rise to ORAI1 currents that displayed significantly reduced or even abolished inactivation when compared with STIM1 mutants with preserved CMD. Consistent results were obtained with cytosolic C-terminal fragments of STIM1, both in ORAI1-expressing HEK 293 cells and in RBL-2H3 mast cells containing endogenous CRAC channels. Inactivation of the latter, however, was much more pronounced than that of ORAI1. The extent of inactivation of ORAI3 channels, which is also considerably more prominent than that of ORAI1, was also substantially reduced by co-expression of STIM1 constructs missing CMD. Regarding the dependence of inactivation on Ca2+, a decrease in intracellular Ca2+ chelator concentrations promoted ORAI1 current fast inactivation, whereas Ba2+ substitution for extracellular Ca2+ completely abrogated it. In summary, CMD within the STIM1 cytosolic part provides a negative feedback signal to Ca2+ entry by triggering fast Ca2+-dependent inactivation of ORAI/CRAC channels.The Ca2+ release-activated Ca2+ (CRAC)5 channel is one of the best characterized store-operated entry pathways (17). Substantial efforts have led to identification of two key components of the CRAC channel machinery: the stromal interaction molecule 1 (STIM1), which is located in the endoplasmic reticulum and acts as a Ca2+ sensor (810), and ORAI1/CRACM1, the pore-forming subunit of the CRAC channel (1113). Besides ORAI1, two further homologues named ORAI2 and ORAI3 belong to the ORAI channel family (12, 14).STIM1 senses endoplasmic reticulum store depletion primarily by its luminal EF-hand in its N terminus (8, 15), redistributes close to the plasma membrane, where it forms puncta-like structures, and co-clusters with ORAI1, leading to inward Ca2+ currents (12, 1619). The STIM1 C terminus, located in the cytosol, contains two coiled-coil regions overlapping with an ezrin-radixin-moesin (ERM)-like domain followed by a serine/proline- and a lysine-rich region (2, 8, 2022). Three recent studies have described the essential ORAI-activating region within the ERM domain, termed SOAR (Stim ORAI-activating region) (23), OASF (ORAI-activating small fragment) (24), and CAD (CRAC-activating domain) (25), including the second coiled coil domain and the following ∼55 amino acids. We and others have provided evidence that store depletion leads to a dynamic coupling of STIM1 to ORAI1 (2628) that is mediated by a direct interaction of the STIM1 C terminus with ORAI1 C terminus probably involving the putative coiled-coil domain in the latter (27).Furthermore, different groups have proven that the C terminus of STIM1 is sufficient to activate CRAC as well as ORAI1 channels independent of store depletion (2225, 27, 29). We have identified that OASF-(233–474) or shorter fragments exhibit further enhanced coupling to ORAI1 resulting in 3-fold increased constitutive Ca2+ currents. A STIM1 fragment containing an additional cluster of anionic amino acids C-terminal to position 474 displays weaker interaction with ORAI1 as well as reduced Ca2+ current comparable with that mediated by wild-type STIM1 C terminus. Hence, we have suggested that these 11 amino acids (474–485) act in a modulatory manner onto ORAI1; however, their detailed mechanistic impact within the STIM1/ORAI1 signaling machinery has remained so far unclear.In this study, we focused on the impact of this negative cluster on fast inactivation of STIM1-mediated ORAI Ca2+ currents. Lis et al. (30) have shown that all three ORAI homologues display distinct inactivation profiles, where ORAI2 and ORAI3 show a much more pronounced fast inactivation than ORAI1. Moreover, it has been reported (31) that different expression levels of STIM1 to ORAI1 affect the properties of CRAC current inactivation. Yamashita et al. (32) have demonstrated a linkage between the selectivity filter of ORAI1 and its Ca2+-dependent fast inactivation. Here we provide evidence that a cluster of acidic residues within the C terminus of STIM1 is involved in the fast inactivation of ORAI1 and further promotes that of ORAI3 and native CRAC currents.  相似文献   

4.
The Ca2+ release-activated Ca2+ channel is a principal regulator of intracellular Ca2+ rise, which conducts various biological functions, including immune responses. This channel, involved in store-operated Ca2+ influx, is believed to be composed of at least two major components. Orai1 has a putative channel pore and locates in the plasma membrane, and STIM1 is a sensor for luminal Ca2+ store depletion in the endoplasmic reticulum membrane. Here we have purified the FLAG-fused Orai1 protein, determined its tetrameric stoichiometry, and reconstructed its three-dimensional structure at 21-Å resolution from 3681 automatically selected particle images, taken with an electron microscope. This first structural depiction of a member of the Orai family shows an elongated teardrop-shape 150Å in height and 95Å in width. Antibody decoration and volume estimation from the amino acid sequence indicate that the widest transmembrane domain is located between the round extracellular domain and the tapered cytoplasmic domain. The cytoplasmic length of 100Å is sufficient for direct association with STIM1. Orifices close to the extracellular and intracellular membrane surfaces of Orai1 seem to connect outside the molecule to large internal cavities.Ca2+ is an intracellular second messenger that plays important roles in various physiological functions such as immune response, muscle contraction, neurotransmitter release, and cell proliferation. Intracellular Ca2+ is mainly stored in the endoplasmic reticulum (ER).2 This ER system is distributed through the cytoplasm from around the nucleus to the cell periphery close to the plasma membrane. In non-excitable cells, the ER releases Ca2+ through the inositol 1,4,5-trisphosphate (IP3) receptor channel in response to various signals, and the Ca2+ store is depleted. Depletion of Ca2+ then induces Ca2+ influx from outside the cell to help in refilling the Ca2+ stores and to continue Ca2+ rise for several minutes in the cytoplasm (1, 2). This Ca2+ influx was first proposed by Putney (3) and was named store-operated Ca2+ influx. In the immune system, store-operated Ca2+ influx is mainly mediated by the Ca2+ release-activated Ca2+ (CRAC) current, which is a highly Ca2+-selective inwardly rectified current with low conductance (4, 5). Pathologically, the loss of CRAC current in T cells causes severe combined immunodeficiency (6) where many Ca2+ signal-dependent gene expressions, including cytokines, are interrupted (7). Therefore, CRAC current is necessary for T cell functions.Recently, Orai1 (also called CRACM1) and STIM1 have been physiologically characterized as essential components of the CRAC channel (812). They are separately located in the plasma membrane and in the ER membrane; co-expression of these proteins presents heterologous CRAC-like currents in various types of cells (10, 1315). Both of them are shown to be expressed ubiquitously in various tissues (1618). STIM1 senses Ca2+ depletion in the ER through its EF hand motif (19) and transmits a signal to Orai1 in the plasma membrane. Although Orai1 is proposed as a regulatory component for some transient receptor potential canonical channels (20, 21), it is believed from the mutation analyses to be the pore-forming subunit of the CRAC channel (8, 2224). In the steady state, both Orai1 and STIM1 molecules are dispersed in each membrane. When store depletion occurs, STIM1 proteins gather into clusters to form puncta in the ER membrane near the plasma membrane (11, 19). These clusters then trigger the clustering of Orai1 in the plasma membrane sites opposite the puncta (25, 26), and CRAC channels are activated (27).Orai1 has two homologous genes, Orai2 and Orai3 (8). They form the Orai family and have in common the four transmembrane (TM) segments with relatively large N and C termini. These termini are demonstrated to be in the cytoplasm, because both N- and C-terminally introduced tags are immunologically detected only in the membrane-permeabilized cells (8, 9). The subunit stoichiometry of Orai1 is as yet controversial: it is believed to be an oligomer, presumably a dimer or tetramer even in the steady state (16, 2830).Despite the accumulation of biochemical and electrophysiological data, structural information about Orai1 is limited due to difficulties in purification and crystallization. In this study, we have purified Orai1 in its tetrameric form and have reconstructed the three-dimensional structure from negatively stained electron microscopic (EM) images.  相似文献   

5.
The annexins are a family of Ca2+- and phospholipid-binding proteins, which interact with membranes upon increase of [Ca2+]i or during cytoplasmic acidification. The transient nature of the membrane binding of annexins complicates the study of their influence on intracellular processes. To address the function of annexins at the plasma membrane (PM), we fused fluorescent protein-tagged annexins A6, A1, and A2 with H- and K-Ras membrane anchors. Stable PM localization of membrane-anchored annexin A6 significantly decreased the store-operated Ca2+ entry (SOCE), but did not influence the rates of Ca2+ extrusion. This attenuation was specific for annexin A6 because PM-anchored annexins A1 and A2 did not alter SOCE. Membrane association of annexin A6 was necessary for a measurable decrease of SOCE, because cytoplasmic annexin A6 had no effect on Ca2+ entry as long as [Ca2+]i was below the threshold of annexin A6-membrane translocation. However, when [Ca2+]i reached the levels necessary for the Ca2+-dependent PM association of ectopically expressed wild-type annexin A6, SOCE was also inhibited. Conversely, knockdown of the endogenous annexin A6 in HEK293 cells resulted in an elevated Ca2+ entry. Constitutive PM localization of annexin A6 caused a rearrangement and accumulation of F-actin at the PM, indicating a stabilized cortical cytoskeleton. Consistent with these findings, disruption of the actin cytoskeleton using latrunculin A abolished the inhibitory effect of PM-anchored annexin A6 on SOCE. In agreement with the inhibitory effect of annexin A6 on SOCE, constitutive PM localization of annexin A6 inhibited cell proliferation. Taken together, our results implicate annexin A6 in the actin-dependent regulation of Ca2+ entry, with consequences for the rates of cell proliferation.Calcium entry into cells either through voltage- or receptor-operated channels, or following the depletion of intracellular stores is a major factor in maintaining intracellular Ca2+ homeostasis. Resting [Ca2+]i is low (∼100 nm compared with extracellular [Ca2+]ex of 1.2 mm) and can be rapidly increased by inositol triphosphate-mediated release from the intracellular Ca2+ stores (mostly endoplasmic reticulum (ER)3), or by channel-mediated influx across the plasma membrane (PM). Store-operated calcium entry (SOCE) has been proposed as the main process controlling Ca2+ entry in non-excitable cells (1), and the recent discovery of Orai1 and STIM provided the missing link between the Ca2+-release activated current (ICRAC) and the ER Ca2+ sensor (24). Translocation of STIM within the ER, accumulation in punctae at the sites of contact with PM and activation of Ca2+ channels have been proposed as a model of its regulation of Orai1 activity (5, 6). However, many details of the functional STIM-Orai1 protein complex and its regulation remain to be elucidated. The actin cytoskeleton plays a major role in the regulation of SOCE, possibly by influencing the function of ion channels or by interfering with the interaction between STIM and Orai1 (79). However, the proteins connecting the actin cytoskeleton and SOCE activity at the PM have yet to be identified.The annexins are a multigene family of Ca2+- and phospholipid-binding proteins, which have been implicated in many Ca2+-regulated processes. Their C-terminal core is evolutionarily conserved and contains Ca2+-binding sites, their N-terminal tails are unique and enable the protein to interact with distinct cytoplasmic partners. At low [Ca2+]i, annexins are diffusely distributed throughout the cytosol, however, after stimulation resulting in the increase of [Ca2+]i, annexins are targeted to distinct subcellular membrane locations, such as the PM, endosomes, or secretory vesicles (10). Annexins are involved in the processes of vesicle trafficking, cell division, apoptosis, calcium signaling, and growth regulation (11), and frequent changes in expression levels of annexins are observed in disease (12, 13). Previously, using biochemical methods and imaging of fluorescent protein-tagged annexins in live cells, we demonstrated that annexins A1, A2, A4, and A6 interacted with the PM as well as with internal membrane systems in a highly coordinated manner (10, 14). In addition, there is evidence of Ca2+-independent membrane association of several annexins, including annexin A6 (1519); some of which point to the existence of pH-dependent binding mechanisms (2022). Given the fact that several annexins are present within any one cell, it is likely that they form a [Ca2+] and pH sensing system, with a regulatory influence on other signaling pathways.The role of annexins as regulators of ion channel activity has been addressed previously (2325). In particular, annexin A6 has been implicated in regulation of the sarcoplasmic reticulum ryanodine-sensitive Ca2+ channel (25), the neuronal K+ and Ca2+ channels (26), and the cardiac Na+/Ca2+ exchanger (27). Cardiac-specific overexpression of annexin A6 resulted in lower basal [Ca2+], a depression of [Ca2+]i transients and impaired cardiomyocyte contractility (28). In contrast, the cardiomyocytes from the annexin A6 null-mutant mice showed increased contractility and accelerated Ca2+ clearance (29). Consistent with its role in mediating the intracellular Ca2+ signals, especially Ca2+ influx, ectopic overexpression of annexin A6 in A431 cells, which lack endogenous annexin A6, resulted in inhibition of EGF-dependent Ca2+ entry (30).The difficulty of investigating the influence of annexins on signaling events occurring at the PM lies in the transient and reversible nature of their Ca2+ and pH-dependent lipid binding. Although the intracellular Ca2+ increase following receptor activation or Ca2+ influx promotes the association of the Ca2+-sensitive annexins A2 and A6 with the PM, the proteins quickly resume their cytoplasmic localization upon restoration of the basal [Ca2+]i (14). Therefore, to investigate the effects of membrane-associated annexins on Ca2+ homeostasis and the cell signaling machinery, we aimed to develop a model system allowing for a constitutive membrane association of annexins. Here we used the PM-anchoring sequences of the H- and K-Ras proteins to target annexins A6 and A1 to the PM independently of [Ca2+]. The Ras GTPases are resident at the inner leaflet of the PM and function as molecular switches (31). The C-terminal 9 amino acids of H- and N-Ras and the C-terminal 14 amino acids of K-Ras comprise the signal sequences for membrane anchoring of Ras isoforms (32). Although the palmitoylation and farnesylation of the C terminus of H-Ras (tH) serves as a targeting signal for predominantly cholesterol-rich membrane microdomains at the PM (lipid rafts/caveolae) (33), the polybasic group and the lipid anchor of K-Ras (tK) ensures the association of K-Ras with cholesterol-poor PM membrane domains. Importantly, these minimal C-terminal amino acid sequences are sufficient to target heterologous proteins, for example GFP, to different microdomains at the PM and influence their trafficking (34).In the present study we fused annexins A6, A2, and A1 with fluorescent proteins and introduced the PM-anchoring sequences of either H-Ras (annexin-tH) or K-Ras (annexin-tK) at the C termini of the fusion constructs. We demonstrate that the constitutive PM localization of annexin A6 results in down-regulation of store-operated Ca2+ entry. Expression of membrane-anchored annexin A6 causes an accumulation of the cortical F-actin, and cytoskeletal destabilization with latrunculin A abolishes the inhibitory effect of PM-anchored annexin A6 on SOCE. Taken together, our results implicate annexin A6 in the maintenance of intracellular Ca2+ homeostasis via actin-dependent regulation of Ca2+ entry.  相似文献   

6.
Patients with severe combined immune deficiency (SCID) suffer from defective T-cell Ca2+ signaling. A loss of Ca2+ entry has been linked at the molecular level to single missense mutation R91W in the store-operated Ca2+ channel ORAI1. However, the mechanistic impact of this mutation on ORAI1 function remains unclear. Confocal Förster resonance energy transfer microscopy revealed that dynamic store-operated coupling of STIM1 to ORAI1 R91W was largely sustained similar to wild-type ORAI1. Characterization of various point mutants at position 91 by whole cell patch clamp recordings displayed that neutral or even negatively charged amino acids did not abolish ORAI1 function. However, substitution by hydrophobic leucine, valine, or phenylalanine resulted in non-functional ORAI1 channels, despite preserved STIM1 coupling. Besides conformational constraints at the N terminus/membrane interface predicted for the hydrophobic mutants, additional key factor(s) were suggested to determine ORAI1 functionality. Calculation of the probability for the 1st transmembrane domain and its hydrophobicity revealed a substantial increase for all hydrophobic substitutions that lead to non-functional ORAI1 R91X mutants in contrast to those with hydrophilic residues. Hence, increased hydrophobicity might lead to disrupted permeation/gating, as an ORAI1 channel with increased pore size and R91W mutation failed to recover activity. In conclusion, the increase in hydrophobicity at the N terminus/membrane interface represents the major cause for yielding non-functional ORAI1 channels.The immune system consists of various cell types such as T- and B-cells that are involved in protecting the body from foreign particles and pathogenic organisms. Defects in T-cell development impair normal immune function and may lead to primary immune deficiency. One subgroup thereof represented by the severe combined immunodeficiency (SCID)4 occurs in 1 of 50,000–100,000 live births, causing an onset of one or more serious infections, such as pneumonia, meningitis, or bloodstream infections, within the first few months of life (1, 2). It is currently known that defective T-cell signaling in SCID patients can arise from mutations in different genes including a point mutation in ORAI1 (35). T-cell function and proliferation requires calcium influx mediated by the Ca2+ release-activated Ca2+ channel. It is activated by depletion of intracellular Ca2+ stores induced by the second messenger inositol 1,4,5-trisphosphate (69) and this cytosolic Ca2+ entry serves essential functions from secretion to gene expression and cell growth (10).A combination of RNA interference-based screening and analysis of single nucleotide polymorphism arrays of patients with SCID syndrome has led to the identification of the plasma-membrane protein ORAI1 as a key component of the Ca2+ release-activated Ca2+ channel complex (11, 12). An overexpression of wild-type ORAI1 (4) or a related member ORAI3 (13) in SCID T-cells partially restored store-operated Ca2+ influx. Based on permeability studies of different point mutants in transmembrane regions 1 and 3 of ORAI1, it is suggested to form the pore of the Ca2+ release-activated Ca2+ channel (1416). ORAI1 acts in concert with the stromal interacting molecule 1 (STIM1) (4, 1719), a single transmembrane spanning Ca2+ sensor located in the endoplasmic reticulum. We have recently demonstrated that a dynamic coupling of STIM1 to ORAI1 via a putative coiled-coil domain in its C terminus is induced by endoplasmic reticulum store depletion, resulting in Ca2+ influx through the ORAI1 channels (20). The impaired Ca2+ influx into T-cells of SCID patients has been attributed to a single missense mutation R91W in ORAI1, which is conserved among all three ORAI proteins and located at the N terminus/membrane interface (18). Platelets of mice expressing ORAI1 R93W (a homologue to the human ORAI1 R91W) display markedly reduced store-operated Ca2+ entry, reduced integrin expression, as well as impaired degranulation (21). The generation of a series of concatenated tetramers of ORAI1 that include different numbers and arrangements of mutant ORAI1 R91W proteins shows that an increasing number of mutant proteins results in a graded reduction in Ca2+ release-activated Ca2+ channel currents (22). However, the molecular impact that leads to non-functional ORAI1 R91W channels is still unknown.Here, a set of single point mutations at position 91 of ORAI1 and the adjacent ASSR domain (aa 88–91) were analyzed with confocal Förster resonance energy transfer (FRET) microscopy and the whole cell patch clamp technique. Our functional data together with predictions on the secondary structure suggested that besides conformational constraints within the ASSW domain a substantial increase in hydrophobicity and probability of the first transmembrane segment led to non-functional ORAI channels, yet retained their ability to couple to STIM1 in a store-dependent manner.  相似文献   

7.
ARAP1 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GTPase-activating protein (GAP) with five PH domains that regulates endocytic trafficking of the epidermal growth factor receptor (EGFR). Two tandem PH domains are immediately N-terminal of the Arf GAP domain, and one of these fits the consensus sequence for PtdIns(3,4,5)P3 binding. Here, we tested the hypothesis that PtdIns(3,4,5)P3-dependent recruitment mediated by the first PH domain of ARAP1 regulates the in vivo and in vitro function of ARAP1. We found that PH1 of ARAP1 specifically bound to PtdIns(3,4,5)P3, but with relatively low affinity (≈1.6 μm), and the PH domains did not mediate PtdIns(3,4,5)P3-dependent recruitment to membranes in cells. However, PtdIns(3,4,5)P3 binding to the PH domain stimulated GAP activity and was required for in vivo function of ARAP1 as a regulator of endocytic trafficking of the EGFR. Based on these results, we propose a variation on the model for the function of phosphoinositide-binding PH domains. In our model, ARAP1 is recruited to membranes independently of PtdIns(3,4,5)P3, the subsequent production of which triggers enzymatic activity.Pleckstrin homology (PH)2 domains are a common structural motif encoded by the human genome (1, 2). Approximately 10% of PH domains bind to phosphoinositides. These PH domains are thought to mediate phosphoinositide-dependent recruitment to membranes (13). Most PH domains likely have functions other than or in addition to phosphoinositide binding. For example, PH domains have been found to bind to protein and DNA (412). In addition, some PH domains have been found to be structurally and functionally integrated with adjacent domains (13, 14). A small fraction of PH domain-containing proteins (about 9% of the human proteins) have multiple PH domains arranged in tandem, which have been proposed to function as adaptors but have only been examined in one protein (15, 16). Arf GTPase-activating proteins (GAPs) of the ARAP family are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GAPs with tandem PH domains (17, 18). The function of specific PH domains in regulating Arf GAP activity and for biologic activity has not been described.Arf GAPs are proteins that induce the hydrolysis of GTP bound to Arfs (1923). The Arf proteins are members of the Ras superfamily of GTP-binding proteins (2427). The six Arf proteins in mammals (five in humans) are divided into three classes based on primary sequence: Arf1, -2, and -3 are class 1, Arf4 and -5 are class 2, and Arf6 is class 3 (23, 24, 2729). Class 1 and class 3 Arf proteins have been studied more extensively than class 2. They have been found to regulate membrane traffic and the actin cytoskeleton.The Arf GAPs are a family of proteins with diverse domain structures (20, 21, 23, 30). ARAPs, the most structurally complex of the Arf GAPs, contain, in addition to an Arf GAP domain, the sterile α motif (SAM), five PH, Rho GAP, and Ras association domains (17, 18, 31, 32). The first and second and the third and fourth PH domains are tandem (Fig. 1). The first and third PH domains of the ARAPs fit the consensus for PtdIns(3,4,5)P3 binding (3335). ARAPs have been found to affect actin and membrane traffic (21, 23). ARAP3 regulates growth factor-induced ruffling of porcine aortic endothelial cells (31, 36, 37). The function is dependent on the Arf GAP and Rho GAP domains. ARAP2 regulates focal adhesions, an actin cytoskeletal structure (17). ARAP2 function requires Arf GAP activity and a Rho GAP domain capable of binding RhoA·GTP. ARAP1 has been found to have a role in membrane traffic (18). The protein associates with pre-early endosomes involved in the attenuation of EGFR signals. The function of the tandem PH domains in the ARAPs has not been examined.Open in a separate windowFIGURE 1.ARAP1 binding to phospholipids. A, schematic of the recombinant proteins used in this study. Domain abbreviations: Ank, ankyrin repeat; PLCδ-PH, PH domain of phospholipase C δ; RA, Ras association motif; RhoGAP, Rho GTPase-activating domain. B, ARAP1 phosphoinositide binding specificity. 500 nm PH1-Ank recombinant protein was incubated with sucrose-loaded LUVs formed by extrusion through a 1-μm pore filter. LUVs contained PtdIns alone or PtdIns with 2.5 μm PtdIns(3,4,5)P3, 2.5 μm PtdIns(3)P, 2.5 μm PtdIns(4)P, 2.5 μm PtdIns(5)P, 2.5 μm PtdIns(3,4)P2, 2.5 μm PtdIns(3,5)P2, or 2.5 μm PtdIns(4,5)P2 with a total phosphoinositide concentration of 50 μm and a total phospholipid concentration of 500 μm. Vesicles were precipitated by ultracentrifugation, and associated proteins were separated by SDS-PAGE. The amount of precipitated protein was determined by densitometry of the Coomassie Blue-stained gels with standards on each gel. C, PtdIns(3,4,5)P3-dependent binding of ARAP1 to LUVs. 1 μm PH1-Ank or ArfGAP-Ank recombinant protein was incubated with 1 mm sucrose-loaded LUVs formed by extrusion through a 1-μm pore size filter containing varying concentration of PtdIns(3,4,5)P3. Precipitation of LUVs and analysis of associated proteins were performed as described in B. The average ± S.E. of three independent experiments is presented.Here we investigated the role of the first two PH domains of ARAP1 for catalysis and in vivo function. The first PH domain fits the consensus sequence for PtdIns(3,4,5)P3 binding (3335). The second does not fit a phosphoinositide binding consensus but is immediately N-terminal to the GAP domain. We have previously reported that the PH domain that occurs immediately N-terminal of the Arf GAP domain of ASAP1 is critical for the catalytic function of the protein (38, 39). We tested the hypothesis that the two PH domains of ARAP1 function independently; one recruits ARAP1 to PtdIns(3,4,5)P3-rich membranes, and the other functions with the catalytic domain. As predicted, PH1 interacted specifically with PtdIns(3,4,5)P3, and PH2 did not. However, both PH domains contributed to catalysis independently of recruitment to membranes. None of the PH domains in ARAP1 mediated PtdIns(3,4,5)P3-dependent targeting to plasma membranes (PM). PtdIns(3,4,5)P3 stimulated GAP activity, and the ability to bind PtdIns(3,4,5)P3 was required for ARAP1 to regulate membrane traffic. We propose that ARAP1 is recruited independently of PtdIns(3,4,5)P3 to the PM where PtdIns(3,4,5)P3 subsequently regulates its GAP activity to control endocytic events.  相似文献   

8.
The binding of the adaptor protein APPL1 to adiponectin receptors is necessary for adiponectin-induced AMP-activated protein kinase (AMPK) activation in muscle, yet the underlying molecular mechanism remains unknown. Here we show that in muscle cells adiponectin and metformin induce AMPK activation by promoting APPL1-dependent LKB1 cytosolic translocation. APPL1 mediates adiponectin signaling by directly interacting with adiponectin receptors and enhances LKB1 cytosolic localization by anchoring this kinase in the cytosol. Adiponectin also activates another AMPK upstream kinase Ca2+/calmodulin-dependent protein kinase kinase by activating phospholipase C and subsequently inducing Ca2+ release from the endoplasmic reticulum, which plays a minor role in AMPK activation. Our results show that in muscle cells adiponectin is able to activate AMPK via two distinct mechanisms as follows: a major pathway (the APPL1/LKB1-dependent pathway) that promotes the cytosolic localization of LKB1 and a minor pathway (the phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathway) that stimulates Ca2+ release from intracellular stores.Adiponectin, an adipokine abundantly expressed in adipose tissue, exhibits anti-diabetic, anti-inflammatory, and anti-atherogenic properties and hence is a potential therapeutic target for various metabolic diseases (13). The beneficial effects of adiponectin are mediated through the direct interaction of adiponectin with its cell surface receptors, AdipoR1 and AdipoR2 (4, 5). Adiponectin increases fatty acid oxidation and glucose uptake in muscle cells by activating AMP-activated protein kinase (AMPK)3 (4, 6), which depends on the interaction of AdipoR1 with the adaptor protein APPL1 (Adaptor protein containing Pleckstrin homology domain, Phosphotyrosine binding domain, and Leucine zipper motif) (5). However, the underlying mechanisms by which APPL1 mediates adiponectin signaling to AMPK activation and other downstream targets remain unclear.AMPK is a serine/threonine protein kinase that acts as a master sensor of cellular energy balance in mammalian cells by regulating glucose and lipid metabolism (7, 8). AMPK is composed of a catalytic α subunit and two noncatalytic regulatory subunits, β and γ. The NH2-terminal catalytic domain of the AMPKα subunit is highly conserved and contains the activating phosphorylation site (Thr172) (9). Two AMPK variants, α1 and α2, exist in mammalian cells that show different localization patterns. AMPKα1 subunit is localized in non-nuclear fractions, whereas the AMPKα2 subunit is found in both nucleus and non-nuclear fractions (10). Biochemical regulation of AMPK activation occurs through various mechanisms. An increase in AMP level stimulates the binding of AMP to the γ subunit, which induces a conformational change in the AMPK heterotrimer and results in AMPK activation (11). Studies have shown that the increase in AMPK activity is not solely via AMP-dependent conformational change, rather via phosphorylation by upstream kinases, LKB1 and CaMKK. Dephosphorylation by protein phosphatases is also important in regulating the activity of AMPK (12).LKB1 has been considered as a constitutively active serine/threonine protein kinase that is ubiquitously expressed in all tissues (13, 14). Under conditions of high cellular energy stress, LKB1 acts as the primary AMPK kinase through an AMP-dependent mechanism (1517). Under normal physiological conditions, LKB1 is predominantly localized in the nucleus. LKB1 is translocated to the cytosol, either by forming a heterotrimeric complex with Ste20-related adaptor protein (STRADα/β) and mouse protein 25 (MO25α/β) or by associating with an LKB1-interacting protein (LIP1), to exert its biological function (1822). Although LKB1 has been shown to mediate contraction- and adiponectin-induced activation of AMPK in muscle cells, the underlying molecular mechanisms remain elusive (15, 23).CaMKK is another upstream kinase of AMPK, which shows considerable sequence and structural homology with LKB1 (2426). The two isoforms of CaMKK, CaMKKα and CaMKKβ, encoded by two distinct genes, share ∼70% homology at the amino acid sequence level and exhibit a wide expression in rodent tissues, including skeletal muscle (2734). Unlike LKB1, AMPK phosphorylation mediated by CaMKKs is independent of AMP and is dependent only on Ca2+/calmodulin (35). Hence, it is possible that an LKB1-independent activation of AMPK by CaMKK exists in muscle cells. However, whether and how adiponectin stimulates this pathway in muscle cells are not known.In this study, we demonstrate that in muscle cells adiponectin induces an APPL1-dependent LKB1 translocation from the nucleus to the cytosol, leading to increased AMPK activation. Adiponectin also activates CaMKK by stimulating intracellular Ca2+ release via the PLC-dependent mechanism, which plays a minor role in activation of AMPK. Taken together, our results demonstrate that enhanced cytosolic localization of LKB1 and Ca2+-induced activation of CaMKK are the mechanisms underlying adiponectin-stimulated AMPK activation in muscle cells.  相似文献   

9.
10.
11.
12.
We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcγ receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcγ receptor-mediated phagocytosis to enhance the innate immune response.Receptors that interact with the constant region of IgG (FcγR)4 mediate the recognition and elimination of soluble immune complexes and particles coated (opsonized) with immunoglobulins. Clustering of FcγR on the surface of leukocytes upon attachment to multivalent ligands induces their activation and subsequent internalization. Soluble immune complexes are internalized by endocytosis, a clathrin- and ubiquitylation-dependent process (1). In contrast, large, particulate complexes like IgG-coated pathogens are ingested by phagocytosis, a process that is contingent on extensive actin polymerization that drives the extension of pseudopods (2). In parallel with the internalization of the opsonized targets, cross-linking of phagocytic receptors triggers a variety of other responses that are essential components of the innate immune response. These include degranulation, activation of the respiratory burst, and the synthesis and release of multiple inflammatory agents (3, 4).Like T and B cell receptors, FcγR possesses an immunoreceptor tyrosine-based activation motif that is critical for signal transduction (3, 4). Upon receptor clustering, tyrosyl residues of the immunoreceptor tyrosine-based activation motif are phosphorylated by Src family kinases, thereby generating a docking site for Syk, a tyrosine kinase of the ZAP70 family (3, 4). The recruitment and activation of Syk in turn initiates a cascade of events that include activation of Tec family kinases, Rho- and ARF-family GTPases, phosphatidylinositol 3-kinase, phospholipase Cγ (PLCγ), and a multitude of additional effectors that together remodel the underlying cytoskeleton, culminating in internalization of the bound particle (5, 6).Phosphoinositide metabolism is thought to be critical for FcγR-induced phagocytosis (7, 8). Highly localized and very dynamic phosphoinositide changes have been observed at sites of phagocytosis: phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) undergoes a transient accumulation at the phagocytic cup, which is rapidly superseded by its complete elimination from the nascent phagosome (7). The secondary disappearance of PtdIns(4,5)P2 is attributable in part to the localized generation of phosphatidylinositol 3,4,5-trisphosphate, which has been reported to accumulate at sites of phagocytosis (9). Activation of PLCγ is also believed to contribute to the acute disappearance of PtdIns(4,5)P2 in nascent phagosomes. Indeed, the generation of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate has been detected by chemical means during FcγR-evoked particle ingestion (10, 11). Moreover, imaging experiments revealed that DAG appears at the time and at the precise site where PtdIns(4,5)P2 is consumed (7).Two lines of evidence suggest that the DAG generated upon engagement of phagocytic receptors modulates particle engulfment. First, antagonists of PLC severely impair phagocytosis by macrophages (7, 12). This inhibition is not mimicked by preventing the associated [Ca2+] transient, suggesting that DAG, and not inositol 1,4,5-trisphosphate, is the crucial product of the PLC (13). Second, the addition of exogenous DAG or phorbol esters, which mimic the actions of endogenous DAG, augment phagocytosis (14, 15).Selective recognition of DAG by cellular ligands is generally mediated by specific regions of its target proteins, called C1 domains (16). Proteins bearing C1 domains include, most notably, members of the classical and novel families of protein kinase C (PKC), making them suitable candidates to account for the DAG dependence of phagocytosis. Indeed, PKCα, a classical isoform, and PKCϵ and PKCδ, both novel isoforms, are recruited to phagosomes (12, 15, 17, 18). Although the role of the various PKC isoforms in particle engulfment has been equivocal over the years, Cheeseman et al. (12) convincingly demonstrated that PKCϵ contributes to particle uptake in a PLC- and DAG-dependent manner.PKCs are not the sole proteins bearing DAG-binding C1 domains. Similar domains are also found in several other proteins, including members of the RasGRP family, chimaerins, and Munc-13 (1921). One or more of these could contribute to the complex set of responses elicited by FcγR-induced DAG production. The RasGRP proteins are a class of exchange factors for the Ras/Rap family of GTPases (22). There are four RasGRP proteins (RasGRP1 to -4), and emerging evidence has implicated RasGRP1 and RasGRP3 in T and B cell receptor signaling (2327).The possible role of DAG-mediated signaling pathways other than PKC in phagocytosis and the subsequent inflammatory response has not been explored. Here, we provide evidence that DAG stimulates Ras and Rap1 at sites of phagocytosis, probably through RasGRPs. Last, the functional consequences of Ras and Rap1 activation were analyzed.  相似文献   

13.
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) α in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPα to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPα was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPα was required for the association of PTPα with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPα acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.The interleukin-1 (IL-1)3 family of pro-inflammatory cytokines mediates host responses to infection and injury. Impaired control of IL-1 signaling leads to chronic inflammation and destruction of extracellular matrices (1, 2), as seen in pathological conditions such as pulmonary fibrosis (3), rheumatoid arthritis (4, 5), and periodontitis (6). IL-1 elicits multiple signaling programs, some of which trigger Ca2+ release from the endoplasmic reticulum (ER) as well as expression of multiple cytokines and inflammatory factors including c-Fos and c-Jun (7, 8), and matrix metalloproteinases (9, 10), which mediate extracellular matrix degradation via mitogen-activated protein kinase-regulated pathways (11).In anchorage-dependent cells including fibroblasts and chondrocytes, focal adhesions (FAs) are required for IL-1-induced Ca2+ release from the ER and activation of ERK (1214). FAs are actin-enriched adhesive domains composed of numerous (>50) scaffolding and signaling proteins (1517). Many FA proteins are tyrosine-phosphorylated, including paxillin, focal adhesion kinase, and src family kinases, all of which are crucial for the assembly and disassembly of FAs (1821). Protein-tyrosine phosphorylation plays a central role in regulating many cellular processes including adhesion (22, 23), motility (24), survival (25), and signal transduction (2629). Phosphorylation of proteins by kinases is balanced by protein-tyrosine phosphatases (PTP), which can enhance or attenuate downstream signaling by dephosphorylation of tyrosine residues (3032).PTPs can be divided into two main categories: receptor-like and intracellular PTPs (33). Two receptor-like PTPs have been localized to FA (leukocyte common antigen-related molecule and PTPα). Leukocyte common antigen-related molecule can dephosphorylate and mediate degradation of p130cas, which ultimately leads to cell death (34, 35). PTPα contains a heavily glycosylated extracellular domain, a transmembrane domain, and two intracellular phosphatase domains (33, 36). The amino-terminal domain predominantly mediates catalytic activity, whereas the carboxyl-terminal domain serves a regulatory function (37, 38). PTPα is enriched in FA (23) and is instrumental in regulating FA dynamics (39) via activation of c-Src/Fyn kinases by dephosphorylating the inhibitory carboxyl tyrosine residue, namely Tyr529 (22, 4042) and facilitation of integrin-dependent assembly of Src-FAK and Fyn-FAK complexes that regulate cell motility (43). Although PTPα has been implicated in formation and remodeling of FAs (44, 45), the role of PTPα in FA-dependent signaling is not defined.Ca2+ release from the ER is a critical step in integrin-dependent IL-1 signal transduction and is required for downstream activation of ERK (13, 46). The release of Ca2+ from the ER depends on the inositol 1,4,5-triphosphate receptor (IP3R), which is an IP3-gated Ca2+ channel (47). All of the IP3R subtypes (subtypes 1–3) have been localized to the ER, as well as other the plasma membrane and other endomembranes (4850). Further, IP3R may associate with FAs, enabling the anchorage of the ER to FAs (51, 52). However, the molecule(s) that provide the structural link for this association has not been defined.FA-restricted, IL-1-triggered signal transduction in anchorage-dependent cells may rely on interacting proteins that are enriched in FAs and the ER (53). Here, we examined the possibility that PTPα associates with c-Src and IP3R to functionally link FAs to the ER, thereby enabling IL-1 signal transduction.  相似文献   

14.
Insulin-regulated stimulation of glucose entry and mobilization of fat/muscle-specific glucose transporter GLUT4 onto the cell surface require the phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) pathway for optimal performance. The reduced insulin responsiveness observed under ablation of the PtdIns(3,5)P2-synthesizing PIKfyve and its associated activator ArPIKfyve in 3T3L1 adipocytes suggests that dysfunction of the PtdIns(3,5)P2-specific phosphatase Sac3 may yield the opposite effect. Paradoxically, as uncovered recently, in addition to turnover Sac3 also supports PtdIns(3,5)P2 biosynthesis by allowing optimal PIKfyve-ArPIKfyve association. These opposing inputs raise the key question as to whether reduced Sac3 protein levels and/or hydrolyzing activity will produce gain in insulin responsiveness. Here we report that small interfering RNA-mediated knockdown of endogenous Sac3 by ∼60%, which resulted in a slight but significant elevation of PtdIns(3,5)P2 in 3T3L1 adipocytes, increased GLUT4 translocation and glucose entry in response to insulin. In contrast, ectopic expression of Sac3WT, but not phosphatase-deficient Sac3D488A, reduced GLUT4 surface abundance in the presence of insulin. Endogenous Sac3 physically assembled with PIKfyve and ArPIKfyve in both membrane and soluble fractions of 3T3L1 adipocytes, but this remained insulin-insensitive. Importantly, acute insulin markedly reduced the in vitro C8-PtdIns(3,5)P2 hydrolyzing activity of Sac3. The insulin-sensitive Sac3 pool likely controls a discrete PtdIns(3,5)P2 subfraction as the high pressure liquid chromatography-measurable insulin-dependent elevation in total [3H]inositol-PtdIns(3,5)P2 was minor. Together, our data identify Sac3 as an insulin-sensitive phosphatase whose down-regulation increases insulin responsiveness, thus implicating Sac3 as a novel drug target in insulin resistance.Insulin simulation of glucose uptake in fat and muscle, which is mediated by the facilitative fat/muscle-specific glucose transporter GLUT4, is essential for maintenance of whole-body glucose homeostasis (17). In basal states GLUT4 is localized in the cell interior, cycling slowly between the plasma membrane and one or more intracellular compartments. Insulin action profoundly activates movements of preformed postendosomal GLUT4 storage vesicles toward the cell surface and their subsequent plasma membrane fusion, thereby increasing the rate of glucose transport >10-fold. Defective signaling/execution of GLUT4 translocation is considered to be a common feature in insulin resistance and type 2 diabetes (8, 9). However, the molecular and cellular regulatory mechanisms whereby insulin activates GLUT4 membrane dynamics and glucose transport are still not fully understood. More than 60 protein and phospholipid intermediate players are currently implicated in orchestrating the overall process (17). A central role is attributed to the highest phosphorylated member of the phosphoinositide (PI)3 family, i.e. phosphatidylinositol (PtdIns) (3,4,5)P3 (3). PtdIns(3,4,5)P3 is generated at the cell surface by the action of wortmannin-sensitive class 1A PI3K that is activated via the insulin-stimulated IR/IR receptor substrate signaling pathway. Inositol polyphosphate 5-phosphatases SHIP or SKIP and 3-phosphatase PTEN rapidly convert PtdIns(3,4,5)P3 to PtdIns(3,4)P2 and PtdIns(4,5)P2, respectively, thereby terminating insulin signal through class 1A PI3K (1013). The class 1A PI3K-opposing function of these lipid phosphatases has provided an appealing prospect that inhibition of their hydrolyzing activities could produce significant efficacy in the treatment of type 2 diabetes and obesity (1416).It has recently become apparent that signals by other PIs act in parallel with that of PtdIns(3,4,5)P3 in integrating the IR-issued signal with GLUT4 surface translocation (3, 4). One such signaling molecule is PtdIns(3,5)P2, whose functioning as a positive regulator in 3T3L1 adipocyte responsiveness to insulin has been supported by several lines of experimental evidence. Thus, expression of dominant-negative kinase-deficient mutants of PIKfyve, the sole enzyme for PtdIns(3,5)P2 synthesis (17, 18), inhibits insulin-induced gain of surface GLUT4 without noticeable aberrations of cell morphology (19). Likewise, reduction in the intracellular PtdIns(3,5)P2 pool through siRNA-mediated PIKfyve depletion reduces GLUT4 cell-surface accumulation and glucose transport activation in response to insulin (20). Concordantly, loss of ArPIKfyve, a PIKfyve activator that physically associates with PIKfyve to facilitate PtdIns(3,5)P2 intracellular production (21, 22), also decreases insulin-stimulated glucose uptake in 3T3L1 adipocytes (20). Combined ablation of PIKfyve and ArPIKfyve produces a greater decrease in this effect, correlating with a greater reduction in the intracellular PtdIns(3,5)P2 pool (20). Finally, pharmacological inhibition of PIKfyve activity powerfully reduces the net insulin effect on glucose uptake (23). These observations indicate positive signaling through the PtdIns(3,5)P2 pathway and suggest that arrested PtdIns(3,5)P2 turnover might potentiate insulin-regulated activation of glucose uptake.Sac3, a product of a single-copy gene in mammals, is a recently characterized phosphatase implicated in PtdIns(3,5)P2 turnover (24). Our observations in several mammalian cell types have revealed that Sac3 plays an intricate role in the PtdIns(3,5)P2 homeostatic mechanism. It is a constituent of the PtdIns(3,5)P2 biosynthetic PIKfyve-ArPIKfyve complex and facilitates the association of these two (24, 25). Intriguingly, only if the PIKfyve-ArPIKfyve-Sac3 triad (known as the “PAS complex”) is intact will the PIKfyve enzymatic activity be activated (25). Thus, Sac3 not only catalyzes PtdIns(3,5)P2 turnover but also promotes PtdIns(3,5)P2 synthesis by functioning as an adaptor for the efficient association of PIKfyve with, and activation by, ArPIKfyve (25). Given these two seemingly opposing inputs, a critical question is whether reduction in Sac3 protein levels or phosphatase activity would facilitate or mitigate insulin action on glucose uptake and GLUT4 translocation. We demonstrate here that reduced levels of Sac3 potentiate, whereas ectopic expression of active Sac3 phosphatase reduces insulin responsiveness of GLUT4 translocation and glucose transport in 3T3L1 adipocytes. Whereas insulin action does not affect the PIKfyve kinase-Sac3 phosphatase association, it markedly inhibits the Sac3 hydrolyzing activity. We suggest that increased PtdIns(3,5)P2 local availability through Sac3 phosphatase inhibition links insulin signaling to its effect on GLUT4 vesicle dynamics and glucose transport.  相似文献   

15.
Calmodulin binds to IQ motifs in the α1 subunit of CaV1.1 and CaV1.2, but the affinities of calmodulin for the motif and for Ca2+ are higher when bound to CaV1.2 IQ. The CaV1.1 IQ and CaV1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to CaV1.1 IQ and compared it with that of calmodulin bound to CaV1.2 IQ. Four methionines in Ca2+-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of CaV1.1 and Tyr-1675 of CaV1.2) contacts this calmodulin pocket. However, Tyr-1675 in CaV1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in CaV1.2 contribute significantly to the difference in the Ca2+ affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca2+-bound and one lobe Ca2+-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to CaV1.2.The complexity of eukaryotic Ca2+ signaling arises from the ability of cells to respond differently to Ca2+ signals that vary in amplitude, duration, and location. A variety of mechanisms decode these signals to drive the appropriate physiological responses. The Ca2+ sensor for many of these physiological responses is the Ca2+-binding protein calmodulin (CaM).2 The primary sequence of CaM is tightly conserved in all eukaryotes, yet it binds and regulates a broad set of target proteins in response to Ca2+ binding. CaM has two domains that bind Ca2+ as follows: an amino-terminal domain (N-lobe) and a carboxyl-terminal domain (C-lobe) joined via a flexible α-helix. Each lobe of CaM binds two Ca2+ ions, and binding within each lobe is highly cooperative. The two lobes of CaM, however, have distinct Ca2+ binding properties; the C-lobe has higher Ca2+ affinity because of a slower rate of dissociation, whereas the N-lobe has weaker Ca2+ affinity and faster kinetics (1). CaM can also bind to some target proteins in both the presence and absence of Ca2+, and the preassociation of CaM in low Ca2+ modulates the apparent Ca2+ affinity of both the amino-terminal and carboxyl-terminal lobes. Differences in the Ca2+ binding properties of the lobes and in the interaction sites of the amino- and carboxyl-terminal lobes enable CaM to decode local versus global Ca2+ signals (2).Even though CaM is highly conserved, CaM target (or recognition) sites are quite heterogeneous. The ability of CaM to bind to very different targets is at least partially due to its flexibility, which allows it to assume different conformations when bound to different targets. CaM also binds to various targets in distinct Ca2+ saturation states as follows: Ca2+-free (3), Ca2+ bound to only one of the two lobes, or fully Ca2+-bound (47). In addition, CaM may bind with both lobes bound to a target (5, 6) or with only a single lobe engaged (8). If a target site can bind multiple conformers of CaM, CaM may undergo several transitions that depend on Ca2+ concentration, thereby tuning the functional response. Identification of stable intermediate states of CaM bound to individual targets will help to elucidate the steps involved in this fine-tuned control.Both CaV1.1 and CaV1.2 belong to the L-type family of voltage-dependent Ca2+ channels, which bind apoCaM and Ca2+-CaM at carboxyl-terminal recognition sites in their α1 subunits (914). Ca2+ binding to CaM, bound to CaV1.2 produces Ca2+-dependent facilitation (CDF) (14). Whether CaV1.1 undergoes CDF is not known. However, both CaV1.2 and CaV1.1 undergo Ca2+- and CaM-dependent inactivation (CDI) (14, 15). CaV1.1 CDI is slower and more sensitive to buffering by 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid than CaV1.2 CDI (15). Ca2+ buffers are thought to influence CDI and/or CDF in voltage-dependent Ca2+ channels by competing with CaM for Ca2+ (16).The conformation of the carboxyl terminus of the α1 subunit is critical for channel function and has been proposed to regulate the gating machinery of the channel (17, 18). Several interactions of this region include intramolecular contacts with the pore inactivation machinery and intermolecular contacts with CaM kinase II and ryanodine receptors (17, 1922). Ca2+ regulation of CaV1.2 may involve several motifs within this highly conserved region, including an EF hand motif and three contiguous CaM-binding sequences (10, 12). ApoCaM and Ca2+-CaM-binding sites appear to overlap at the site designated as the “IQ motif” (9, 12, 13), which are critical for channel function at the molecular and cellular level (14, 23).Differences in the rate at which 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid affects CDI of CaV1.1 and CaV1.2 could reflect differences in their interactions with CaM. In this study we describe the differences in CaM interactions with the IQ motifs of the CaV1.1 and the CaV1.2 channels in terms of crystal structure, CaM affinity, and Ca2+ binding to CaM. We find the structures of Ca2+-CaM-IQ complexes are similar except for a single amino acid change in the peptide that contributes to its affinity for CaM. We also find that the other three amino acids that differ in CaV1.2 and CaV1.1 contribute to the ability of CaV1.2 to bind a partially Ca2+-saturated form of CaM.  相似文献   

16.
Intracellular Ca2+ mobilization plays an important role in a wide variety of cellular processes, and multiple second messengers are responsible for mediating intracellular Ca2+ changes. Here we explored the role of one endogenous Ca2+-mobilizing nucleotide, cyclic adenosine diphosphoribose (cADPR), in the proliferation and differentiation of neurosecretory PC12 cells. We found that cADPR induced Ca2+ release in PC12 cells and that CD38 is the main ADP-ribosyl cyclase responsible for the acetylcholine (ACh)-induced cADPR production in PC12 cells. In addition, the CD38/cADPR signaling pathway is shown to be required for the ACh-induced Ca2+ increase and cell proliferation. Inhibition of the pathway, on the other hand, accelerated nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells. Conversely, overexpression of CD38 increased cell proliferation but delayed NGF-induced differentiation. Our data indicate that cADPR plays a dichotomic role in regulating proliferation and neuronal differentiation of PC12 cells.Mobilization of intracellular Ca2+ stores is involved in diverse cell functions, including fertilization, cell proliferation, and differentiation (14). At least three endogenous Ca2+-mobilizing messengers have been identified, including inositol trisphosphate (IP3),3 nicotinic adenine acid dinucleotide phosphate (NAADP), and cyclic adenosine diphosphoribose (cADPR). Similar to IP3, cADPR can mobilize calcium release in a wide variety of cell types and species, from protozoa to animals. The cADPR-mediated Ca2+ signaling has been indicated in a variety of cellular processes (57), from abscisic acid signaling and regulation of the circadian clock in plants, to mediating long-term synaptic depression in hippocampus.Ample evidence shows that the ryanodine receptors are the main intracellular targets for cADPR (1, 2, 8). Ryanodine receptors (RyRs) are intracellular Ca2+ channels widely expressed in various cells and tissues, including muscles and neurons. It is the major cellular mediator of Ca2+-induced Ca2+ release (CICR) in cells. There are three isoforms of ryanodine receptors: RyR1, RyR2, and RyR3, all of which have been implicated in the cADPR signaling (1, 2, 8). However, evidence regarding cADPR acting directly on the receptors is lacking (9). It has been suggested that accessory proteins, such as calmodulin and FK506-binding protein (FKBP), may be involved instead (1015).cADPR is formed from nicotinamide adenine dinucleotide (NAD) by ADP-ribosyl cyclases. Six ADP-ribosyl cyclases have been identified so far: Aplysia ADP-ribosyl cyclase, three sea urchin homologues (16, 17), and two mammalian homologues, CD38 and CD157 (18). CD38 is a membrane-bound protein and the main mammalian ADP-ribosyl cyclase. As a novel multifunctional enzyme, CD38 catalyzes the synthesis and hydrolysis of both cADPR and NAADP, two structurally and functionally distinct Ca2+ messengers. Virtually all mammalian tissues ever examined have been shown to express CD38. CD38 knock-out mice exhibit multiple physiological defects, ranging from impaired immune responses, metabolic disturbances, to behavioral modifications (1, 6, 18).CD38 was originally identified as a lymphocyte differentiation antigen (18). Indeed, CD38/cADPR has been linked to cell differentiation (5). For example, in human HL-60 cells, CD38 expression and the consequential accumulation of cADPR play a causal role in mediating granulocytic differentiation (19). In addition, expression of CD38 in HeLa and 3T3 cells not only increased intracellular Ca2+ concentration but also induced cell proliferation by significantly reducing the S phase duration, leading to shortened cell doubling time (20). The ability of cADPR to increase cell proliferation has also been observed in human T cells (21), human hemopoietic progenitors (22), human peripheral blood mononuclear cells (23), human mesenchymal stem cells (24), and murine mesangial cells (25).The PC12 cell line was derived from rat adrenal medulla and has been used extensively as a neuronal model, since it exhibits many of the functions observed in primary neuronal cultures (26). Most importantly, PC12 cells can be induced by nerve growth factor (NGF) to differentiate into cells with extensive neurite outgrowths, resembling neuronal dendritic trees (26, 27). In contrast to NGF, numerous growth factors and neurotransmitters can induce the proliferation of PC12 cells instead (26). Both IP3 receptor- and ryanodine receptor-mediated Ca2+ stores have been shown to be present in PC12 cells (2831). The type 2 ryanodine receptor is expressed in PC12 cells and activation of the NO/cGMP pathway in PC12 cells results in calcium mobilization, which is mediated by cADPR and similar to that seen in sea urchin eggs (32). It has been demonstrated that NAADP, another Ca2+-mobilizing messenger, is also a potent neuronal differentiation inducer in PC12 cells, while IP3 exhibits no such role (33, 34). Whether cADPR is involved in the proliferation and differentiation of PC12 cells is unknown.Here we show that activation of the CD38/cADPR/Ca2+ signaling is required for the ACh-induced proliferation in PC12 cells, while inhibition of the pathway accelerates NGF-induced neuronal differentiation. Our data indicate that cADPR is important in regulating cell proliferation and neuronal differentiation in PC12 cells.  相似文献   

17.
We have investigated in detail the role of intra-organelle Ca2+ content during induction of apoptosis by the oxidant menadione while changing and monitoring the Ca2+ load of endoplasmic reticulum (ER), mitochondria, and acidic organelles. Menadione causes production of reactive oxygen species, induction of oxidative stress, and subsequently apoptosis. In both pancreatic acinar and pancreatic tumor AR42J cells, menadione was found to induce repetitive cytosolic Ca2+ responses because of the release of Ca2+ from both ER and acidic stores. Ca2+ responses to menadione were accompanied by elevation of Ca2+ in mitochondria, mitochondrial depolarization, and mitochondrial permeability transition pore (mPTP) opening. Emptying of both the ER and acidic Ca2+ stores did not necessarily prevent menadione-induced apoptosis. High mitochondrial Ca2+ at the time of menadione application was the major factor determining cell fate. However, if mitochondria were prevented from loading with Ca2+ with 10 μm RU360, then caspase-9 activation did not occur irrespective of the content of other Ca2+ stores. These results were confirmed by ratiometric measurements of intramitochondrial Ca2+ with pericam. We conclude that elevated Ca2+ in mitochondria is the crucial factor in determining whether cells undergo oxidative stress-induced apoptosis.Apoptosis, a mechanism of programmed cell death, usually occurs through intrinsic or extrinsic apoptotic pathways. The caspases involved in apoptosis can be split into two groups, the initiator caspases such as caspase-9 and effector caspases such as caspase-3. Effector caspases are activated by initiator caspases and mediate many of the morphological cellular changes associated with apoptosis (1).Calcium is an important signaling ion involved in the regulation of many physiological as well as pathological cellular responses (2). In the pancreas, we have shown that Ca2+ signals elicit enzyme secretion (3), apoptosis (46), and pathological intracellular activation of digestive enzymes (7). As such, there must be mechanisms in place by which the cell can differentiate between apoptotic and non-apoptotic Ca2+ signals.The spatiotemporal pattern of calcium signaling is crucial for the specificity of cellular responses. For example, repetitive cytosolic calcium spikes confined to the apical region of the pancreatic acinar cell are elicited by physiological stimulation with acetylcholine (ACh) or cholecystokinin (CCK) and result in physiological secretion of zymogen granules (8, 9). However, a sustained global increase in free cytosolic Ca2+ induced by supramaximal stimulation with CCK, which resembles prolonged hyperstimulation of pancreatic acinar cells in the pathophysiology of acute pancreatitis, can lead to premature activation of digestive enzymes and vacuole formation within the cell (1012). Alternatively, global repetitive calcium spikes induced in the pancreatic acinar cell in response to oxidant stress can lead to induction of the mitochondrial permeability transition pore (mPTP)4 and apoptosis (4, 5, 13).To understand the role of calcium in apoptosis, several investigators have examined the influence of intracellular stores on the molding of calcium signals that lead to cell death (1416). It has been well established in a range of cell types that the endoplasmic reticulum (ER) is the major intracellular calcium store required for induction of apoptosis. Pinton et al. (17) have shown that decreasing ER Ca2+ concentration with tBuBHQ increased HeLa cell survival in response to oxidant stress induced by ceramide. Scorrano and Korsmeyer (18) also observed that double knock-out Bax and Bak (pro-apoptotic proteins) mouse fibroblasts displayed a reduced resting concentration of ER Ca2+ compared with wild type and were resistant to induction of apoptosis by various stimulants, including ceramide. These important studies strongly suggest that the concentration of Ca2+ in the ER is a critical determinant of cellular susceptibility to apoptotic stimuli in the cell types studied.A key event in early apoptosis is permeabilization of the mitochondrial membrane. The mPTP is a pore whose molecular composition is still debated (19). Activation of an open pore state can result in swelling of the mitochondrial matrix and release of the apoptogenic proteins from the intermembrane space (20).One important activator of the mPTP is Ca2+ (2022), a function which implicates Ca2+ in the initiation of apoptosis (23, 24). Once Ca2+ is released from the ER into the cytoplasm, mitochondria take up part of the released Ca2+ to prevent propagation of large calcium waves (2527). This influx is followed by calcium efflux from the mitochondria back into the cytosol (28, 29). An increase in mitochondrial Ca2+ concentration in response to physiological stimuli induces increased activity of the mitochondrial respiratory chain and the synthesis of ATP to meet with increasing energy demands on the cell. When mitochondria are exposed to a pathological overload of calcium, opening of the mPTP is triggered, leading to mitochondrial dysfunction and eventually cell death. The mechanism through which calcium can trigger mPTP opening is still unclear and may involve cyclophilin D (30) and voltage-dependent anion channel (31). The mitochondria are endowed with selective and efficient calcium uptake (a calcium-selective uniporter) and release mechanisms (Ca2+/Na exchanger, Ca2+/H+ exchanger, and mPTP) (16, 29, 32, 33).Oxidant stress is a well known inducer of apoptosis in several cell types (34) and is thought to play an important role in the pathogenesis of acute pancreatitis (35). We have used the quinone compound menadione to induce oxidative stress in the pancreatic acinar cell. Menadione is metabolized by flavoprotein reductase to semiquinone and then is oxidized back to quinone, resulting in generation of superoxide anion radicals, hydrogen peroxide, and other reactive oxygen species (ROS) (36). In vivo, menadione causes depolarization and swelling of the mitochondria (37). In pancreatic acinar cells, treatment with menadione not only produces an increase in ROS, but has also been found to evoke cytosolic Ca2+ responses, mPTP opening, activation of caspases and apoptotic cell death (4, 5). When cells were pretreated with the calcium chelator BAPTA-AM, menadione was unable to induce apoptosis, indicating that oxidant stress-induced apoptosis in the pancreatic acinar cell is highly calcium-dependent. Here we show that in pancreatic acinar cells, oxidative stress-induced apoptosis is strongly dependent on the Ca2+ concentration within mitochondria at the time of ROS production.  相似文献   

18.
myo1c is a single-headed myosin that dynamically links membranes to the actin cytoskeleton. A putative pleckstrin homology domain has been identified in the myo1c tail that binds phosphoinositides and soluble inositol phosphates with high affinity. However, the kinetics of association and dissociation and the influence of phospholipid composition on the kinetics have not been determined. Stopped-flow spectroscopy was used to measure the binding and dissociation of a recombinant myo1c construct containing the tail and regulatory domains (myo1cIQ-tail) to and from 100-nm diameter large unilamellar vesicles (LUVs). We found the time course of association of myo1cIQ-tail with LUVs containing 2% phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) followed a two-exponential time course, and the rate of the predominant fast phase depended linearly upon the total lipid concentration. The apparent second-order rate constant was approximately diffusion-limited. Increasing the molar ratio of anionic phospholipid by adding phosphatidylserine, additional PtdIns(4,5)P2, or by situating PtdIns(4,5)P2 in a more physiologically relevant lipid background increased the apparent association rate constant less than 2-fold. myo1cIQ-tail dissociated from PtdIns(4,5)P2 at a slower rate (2.0 s−1) than the pleckstrin homology domain of phospholipase C-δ (13 s−1). The presence of additional anionic phospholipid reduced the myo1cIQ-tail dissociation rate constant >50-fold but marginally changed the dissociation rate of phospholipase C-δ, suggesting that additional electrostatic interactions in myo1cIQ-tail help to stabilize binding. Remarkably, high concentrations of soluble inositol phosphates induce dissociation of myo1cIQ-tail from LUVs, suggesting that phosphoinositides are able to bind to and dissociate from myo1cIQ-tail as it remains bound to the membrane.Myosin-I isoforms are low molecular weight members of the myosin superfamily that link cell membranes with the actin cytoskeleton and play crucial roles driving a diverse array of dynamic membrane processes (15). Cell biological studies have shown that myosin-I isoforms localize and fractionate with cell membranes (2, 6), and biochemical experiments have shown myosin-I isoforms bind directly to lipid membranes (710). Thus, a key property of some myosin-I isoforms is their ability to bind membranes.myo1c is a widely expressed vertebrate myosin-I isoform that has roles in a variety of important membrane events, including insulin-stimulated fusion of vesicles containing glucose transporter-4 with the plasma membrane (2, 11), compensatory endocytosis following regulated exocytosis (12), and tensioning of mechano-sensitive ion channels (3). The mechanisms of myo1c targeting and anchoring to specific regions on the membrane to support these functions are not well understood. However, evidence is building that myo1c targeting requires direct binding of myo1c to phosphoinositides in cell membranes (1316).We have shown that binding of myo1c to membranes is mediated by a putative pleckstrin homology (PH)3 domain in its tail that binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and other phosphoinositides with high affinity (Kd <0.5 μm in terms of accessible phosphoinositide concentration) (13). myo1c also binds soluble inositol phosphates (e.g. inositol 1,4,5-trisphosphate (InsP3)) with similar affinity. Point mutations of amino acids known to be essential for phosphoinositide binding in other PH domains inhibit myo1c binding to PtdIns(4,5)P2 in vitro, and these mutations disrupt membrane localization in vivo (13). The affinity of myo1c for PtdIns(4,5)P2-containing membranes is increased by the presence of additional anionic phospholipids in the membrane. This increased affinity may be due to nonspecific electrostatic interactions between the anionic phospholipids and positively charged regions within the myo1c tail or regulatory domain (13, 17), which is similar to what has been found for the guanine nucleotide exchange factor, ARNO (18). However, high affinity membrane binding via these nonspecific electrostatic interactions (i.e. binding in the absence of PtdIns(4,5)P2) requires the membrane composition to contain a nonphysiological mole fraction (e.g. >40% phosphatidylserine) of anionic phospholipids (13, 14).Because phosphoinositide binding is important for the cellular localization and function of myo1c (13), it is important to determine the physical constants that define this interaction. Determining the kinetics of membrane attachment will provide insight into the relationship between membrane attachment and actin attachment lifetimes and will also provide details about the role of anionic lipids in regulating membrane attachment. Therefore, we used stopped-flow kinetics to measure the in vitro association and dissociation kinetics of myo1c from LUVs as a function of phosphoinositide composition and anionic charge.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号