首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The present study tests the hypothesis that the structure of extracellular domain Loop 2 can markedly affect ethanol sensitivity in glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). To test this, we mutated Loop 2 in the α1 subunit of GlyRs and in the γ subunit of α1β2γ2GABAARs and measured the sensitivity of wild type and mutant receptors expressed in Xenopus oocytes to agonist, ethanol, and other agents using two-electrode voltage clamp. Replacing Loop 2 of α1GlyR subunits with Loop 2 from the δGABAAR (δL2), but not the γGABAAR subunit, reduced ethanol threshold and increased the degree of ethanol potentiation without altering general receptor function. Similarly, replacing Loop 2 of the γ subunit of GABAARs with δL2 shifted the ethanol threshold from 50 mm in WT to 1 mm in the GABAA γ-δL2 mutant. These findings indicate that the structure of Loop 2 can profoundly affect ethanol sensitivity in GlyRs and GABAARs. The δL2 mutations did not affect GlyR or GABAAR sensitivity, respectively, to Zn2+ or diazepam, which suggests that these δL2-induced changes in ethanol sensitivity do not extend to all allosteric modulators and may be specific for ethanol or ethanol-like agents. To explore molecular mechanisms underlying these results, we threaded the WT and δL2 GlyR sequences onto the x-ray structure of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC). In addition to being the first GlyR model threaded on GLIC, the juxtaposition of the two structures led to a possible mechanistic explanation for the effects of ethanol on GlyR-based on changes in Loop 2 structure.Alcohol abuse and dependence are significant problems in our society, with ∼14 million people in the United States being affected (1, 2). Alcohol causes over 100,000 deaths in the United States, and alcohol-related issues are estimated to cost nearly 200 billion dollars annually (2). To address this, considerable attention has focused on the development of medications to prevent and treat alcohol-related problems (35). The development of such medications would be aided by a clear understanding of the molecular structures on which ethanol acts and how these structures influence receptor sensitivity to ethanol.Ligand-gated ion channels (LGICs)2 have received substantial attention as putative sites of ethanol action that cause its behavioral effects (612). Research in this area has focused on investigating the effects of ethanol on two large superfamilies of LGICs: 1) the Cys-loop superfamily of LGICs (13, 14), whose members include nicotinic acetylcholine, 5-hydroxytryptamine3, γ-aminobutyric acid type A (GABAA), γ-aminobutyric acid type C, and glycine receptors (GlyRs) (10, 11, 1520) and 2) the glutamate superfamily, including N-methyl d-aspartate, α-amino-3-hydroxyisoxazolepropionic acid, and kainate receptors (21, 22). Recent studies have also begun investigating ethanol action in the ATP-gated P2X superfamily of LGICs (2325).A series of studies that employed chimeric and mutagenic strategies combined with sulfhydryl-specific labeling identified key regions within Cys-loop receptors that appear to be initial targets for ethanol action that also can determine the sensitivity of the receptors to ethanol (712, 18, 19, 2630). This work provides several lines of evidence that position 267 and possibly other sites in the transmembrane (TM) domain of GlyRs and homologous sites in GABAARs are targets for ethanol action and that mutations at these sites can influence ethanol sensitivity (8, 9, 26, 31).Growing evidence from GlyRs indicates that ethanol also acts on the extracellular domain. The initial findings came from studies demonstrating that α1GlyRs are more sensitive to ethanol than are α2GlyRs despite the high (∼78%) sequence homology between α1GlyRs and α2GlyRs (32). Further work found that an alanine to serine exchange at position 52 (A52S) in Loop 2 can eliminate the difference in ethanol sensitivity between α1GlyRs and α2GlyRs (18, 20, 33). These studies also demonstrated that mutations at position 52 in α1GlyRS and the homologous position 59 in α2GlyRs controlled the sensitivity of these receptors to a novel mechanistic ethanol antagonist (20). Collectively, these studies suggest that there are multiple sites of ethanol action in α1GlyRs, with one site located in the TM domain (e.g. position 267) and another in the extracellular domain (e.g. position 52).Subsequent studies revealed that the polarity of the residue at position 52 plays a key role in determining the sensitivity of GlyRs to ethanol (20). The findings with polarity in the extracellular domain contrast with the findings at position 267 in the TM domain, where molecular volume, but not polarity, significantly affected ethanol sensitivity (9). Taken together, these findings indicate that the physical-chemical parameters of residues at positions in the extracellular and TM domains that modulate ethanol effects and/or initiate ethanol action in GlyRs are not uniform. Thus, knowledge regarding the physical-chemical properties that control agonist and ethanol sensitivity is key for understanding the relationship between the structure and the actions of ethanol in LGICs (19, 31, 3440).GlyRs and GABAARs, which differ significantly in their sensitivities to ethanol, offer a potential method for identifying the structures that control ethanol sensitivity. For example, α1GlyRs do not reliably respond to ethanol concentrations less than 10 mm (32, 33, 41). Similarly, γ subunit-containing GABAARs (e.g. α1β2γ2), the most predominantly expressed GABAARs in the central nervous system, are insensitive to ethanol concentrations less than 50 mm (42, 43). In contrast, δ subunit-containing GABAARs (e.g. α4β3δ) have been shown to be sensitive to ethanol concentrations as low as 1–3 mm (4451). Sequence alignment of α1GlyR, γGABAAR, and δGABAAR revealed differences between the Loop 2 regions of these receptor subunits. Since prior studies found that mutations of Loop 2 residues can affect ethanol sensitivity (19, 20, 39), the non-conserved residues in Loop 2 of GlyR and GABAAR subunits could provide the physical-chemical and structural bases underlying the differences in ethanol sensitivity between these receptors.The present study tested the hypothesis that the structure of Loop 2 can markedly affect the ethanol sensitivity of GlyRs and GABAARs. To accomplish this, we performed multiple mutations that replaced the Loop 2 region of the α1 subunit in α1GlyRs and the Loop 2 region of the γ subunit of α1β2γ2 GABAARs with corresponding non-conserved residues from the δ subunit of GABAAR and tested the sensitivity of these receptors to ethanol. As predicted, replacing Loop 2 of WT α1GlyRs with the homologous residues from the δGABAAR subunit (δL2), but not the γGABAAR subunit (γL2), markedly increased the sensitivity of the receptor to ethanol. Similarly, replacing the non-conserved residues of the γ subunit of α1β2γ2 GABAARs with δL2 also markedly increased ethanol sensitivity of GABAARs. These findings support the hypothesis and suggest that Loop 2 may play a role in controlling ethanol sensitivity across the Cys-loop superfamily of receptors. The findings also provide the basis for suggesting structure-function relationships in a new molecular model of the GlyR based on the bacterial Gloeobacter violaceus pentameric LGIC homologue (GLIC).  相似文献   

2.
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17–27HTE) as determined by ELISA (LigBCon4, KD = 0.50 μm; LigBCen7′–8, KD = 0.82 μm; LigBCen9, KD = 1.54 μm; and LigBCen12, KD = 0.73 μm). The interaction of LigBCon4 and 17–27HTE was further confirmed by steady state fluorescence spectroscopy (KD = 0.49 μm) and ITC (KD = 0.54 μm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17–27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.Pathogenic Leptospira spp. are spirochetes that cause leptospirosis, a serious infectious disease of people and animals (1, 2). Weil syndrome, the severe form of leptospiral infection, leads to multiorgan damage, including liver failure (jaundice), renal failure (nephritis), pulmonary hemorrhage, meningitis, abortion, and uveitis (3, 4). Furthermore, this disease is not only prevalent in many developing countries, it is reemerging in the United States (3). Although leptospirosis is a serious worldwide zoonotic disease, the pathogenic mechanisms of Leptospira infection remain enigmatic. Recent breakthroughs in applying genetic tools to Leptospira may facilitate studies on the molecular pathogenesis of leptospirosis (58).The attachment of pathogenic Leptospira spp. to host tissues is critical in the early phase of Leptospira infection. Leptospira spp. adhere to host tissues to overcome mechanical defense systems at tissue surfaces and to initiate colonization of specific tissues, such as the lung, kidney, and liver. Leptospira invade hosts tissues through mucous membranes or injured epidermis, coming in contact with subepithelial tissues. Here, certain bacterial outer surface proteins serve as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)2 to mediate the binding of bacteria to different extracellular matrices (ECMs) of host cells (9). Several leptospiral MSCRAMMs have been identified (1018), and we speculate that more will be identified in the near future.Lig proteins are distributed on the outer surface of pathogenic Leptospira, and the expression of Lig protein is only found in low passage strains (14, 16, 17), probably induced by environmental cues such as osmotic or temperature changes (19). Lig proteins can bind to fibrinogen and a variety of ECMs, including fibronectin (Fn), laminin, and collagen, thereby mediating adhesion to host cells (2023). Lig proteins also constitute good vaccine candidates (2426).Elastin is a component of ECM critical to tissue elasticity and resilience and is abundant in skin, lung, blood vessels, placenta, uterus, and other tissues (2729). Tropoelastin is the soluble precursor of elastin (28). During the major phase of elastogenesis, multiple tropoelastin molecules associate through coacervation (3032). Because of the abundance of elastin or tropoelastin on the surface of host cells, several bacterial MSCRAMMs use elastin and/or tropoelastin to mediate adhesion during the infection process (3335).Because leptospiral infection is known to cause severe pulmonary hemorrhage (36, 37) and abortion (38), we hypothesize that some leptospiral MSCRAMMs may interact with elastin and/or tropoelastin in these elastin-rich tissues. This is the first report that Lig proteins of Leptospira interact with elastin and tropoelastin, and the interactions are mediated by several specific immunoglobulin-like domains of Lig proteins, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12, which bind to the 17th to 27th exons of human tropoelastin (HTE).  相似文献   

3.
4.
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl/HCO3 exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.The collecting duct segment of the distal kidney nephron plays a major role in systemic acid base homeostasis by acid secretion and bicarbonate absorption. The acid secretion occurs via H+-ATPase and H-K-ATPase into the lumen and bicarbonate is absorbed via basolateral Cl/HCO3 exchangers (14). The tubules, which are located within the outer medullary region of the kidney collecting duct (OMCD),2 have the highest rate of acid secretion among the distal tubule segments and are therefore essential to the maintenance of acid base balance (2).The gastric parietal cell is the site of generation of acid and bicarbonate through the action of cytosolic carbonic anhydrase II (5, 6). The intracellular acid is secreted into the lumen via gastric H-K-ATPase, which works in conjunction with a chloride channel and a K+ recycling pathway (710). The intracellular bicarbonate is transported to the blood via basolateral Cl/HCO3 exchangers (1114).SLC26 (human)/Slc26 (mouse) isoforms are members of a conserved family of anion transporters that display tissue-specific patterns of expression in epithelial cells (1524). Several SLC26 members can function as chloride/bicarbonate exchangers. These include SLC26A3 (DRA), SLC26A4 (pendrin), SLC26A6 (PAT1 or CFEX), SLC26A7, and SLC26A9 (2531). SLC26A7 and SLC26A9 can also function as chloride channels (3234).SLC26A7/Slc26a7 is predominantly expressed in the kidney and stomach (28, 29). In the kidney, Slc26a7 co-localizes with AE1, a well-known Cl/HCO3 exchanger, on the basolateral membrane of (acid-secreting) A-intercalated cells in OMCD cells (29, 35, 36) (supplemental Fig. 1). In the stomach, Slc26a7 co-localizes with AE2, a major Cl/HCO3 exchanger, on the basolateral membrane of acid secreting parietal cells (28). To address the physiological function of Slc26a7 in the intact mouse, we have generated Slc26a7 ko mice. We report here that Slc26a7 ko mice exhibit distal renal tubular acidosis and impaired gastric acidification in the absence of morphological abnormalities in kidney or stomach.  相似文献   

5.
6.
7.
8.
Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d ≥ PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.Infection with Helicobacter pylori strains bearing cagA (cytotoxin-associated gene A)-positive strains is the strongest risk factor for the development of gastric carcinoma, the second leading cause of cancer-related death worldwide (13). The cagA gene is located within a 40-kb DNA fragment, termed the cag pathogenicity island, which is specifically present in the genome of cagA-positive H. pylori strains (46). In addition to cagA, there are ∼30 genes in the cag pathogenicity island, many of which encode a bacterial type IV secretion system that delivers the cagA-encoded CagA protein into gastric epithelial cells (710). Upon delivery into gastric epithelial cells, CagA is localized to the plasma membrane, where it undergoes tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-Tyr-Ala motifs by Src family kinases or c-Abl kinase (1114). The C-terminal Glu-Pro-Ile-Tyr-Ala-containing region of CagA is noted for the structural diversity among distinct H. pylori isolates. Oncogenic potential of CagA has recently been confirmed by a study showing that systemic expression of CagA in mice induces gastrointestinal and hematological malignancies (15).When expressed in gastric epithelial cells, CagA induces morphological transformation termed the hummingbird phenotype, which is characterized by the development of one or two long and thin protrusions resembling the beak of the hummingbird. It has been thought that the hummingbird phenotype is related to the oncogenic action of CagA (7, 1619). Pathophysiological relevance for the hummingbird phenotype in gastric carcinogenesis has recently been provided by the observation that infection with H. pylori carrying CagA with greater ability to induce the hummingbird phenotype is more closely associated with gastric carcinoma (2023). Elevated motility of hummingbird cells (cells showing the hummingbird phenotype) may also contribute to invasion and metastasis of gastric carcinoma.In host cells, CagA interacts with the SHP-2 phosphatase, C-terminal Src kinase, and Crk adaptor in a tyrosine phosphorylation-dependent manner (16, 24, 25) and also associates with Grb2 adaptor and c-Met in a phosphorylation-independent manner (26, 27). Among these CagA targets, much attention has been focused on SHP-2 because the phosphatase has been recognized as a bona fide oncoprotein, gain-of-function mutations of which are found in various human malignancies (17, 18, 28). Stable interaction of CagA with SHP-2 requires CagA dimerization, which is mediated by a 16-amino acid CagA-multimerization (CM)2 sequence present in the C-terminal region of CagA (29). Upon complex formation, CagA aberrantly activates SHP-2 and thereby elicits sustained ERK MAP kinase activation that promotes mitogenesis (30). Also, CagA-activated SHP-2 dephosphorylates and inhibits focal adhesion kinase (FAK), causing impaired focal adhesions. It has been shown previously that both aberrant ERK activation and FAK inhibition by CagA-deregulated SHP-2 are involved in induction of the hummingbird phenotype (31).Partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) is an evolutionally conserved serine/threonine kinase originally isolated in C. elegans (3234). Mammalian cells possess four structurally related PAR1 isoforms, PAR1a/MARK3, PAR1b/MARK2, PAR1c/MARK1, and PAR1d/MARK4 (3537). Among these, PAR1a, PAR1b, and PAR1c are expressed in a variety of cells, whereas PAR1d is predominantly expressed in neural cells (35, 37). These PAR1 isoforms phosphorylate microtubule-associated proteins (MAPs) and thereby destabilize microtubules (35, 38), allowing asymmetric distribution of molecules that are involved in the establishment and maintenance of cell polarity.In polarized epithelial cells, CagA disrupts the tight junctions and causes loss of apical-basolateral polarity (39, 40). This CagA activity involves the interaction of CagA with PAR1b/MARK2 (19, 41). CagA directly binds to the kinase domain of PAR1b in a tyrosine phosphorylation-independent manner and inhibits the kinase activity. Notably, CagA binds to PAR1b via the CM sequence (19). Because PAR1b is present as a dimer in cells (42), CagA may passively homodimerize upon complex formation with the PAR1 dimer via the CM sequence, and this PAR1-directed CagA dimer would form a stable complex with SHP-2 through its two SH2 domains.Because of the critical role of CagA in gastric carcinogenesis (7, 1619), it is important to elucidate the molecular basis underlying the morphogenetic activity of CagA. In this study, we investigated the role of PAR1 isoforms in induction of the hummingbird phenotype by CagA, and we obtained evidence that CagA-mediated inhibition of PAR1 kinases contributes to the development of the morphological change by perturbing microtubules and non-muscle myosin II.  相似文献   

9.
ARAP1 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GTPase-activating protein (GAP) with five PH domains that regulates endocytic trafficking of the epidermal growth factor receptor (EGFR). Two tandem PH domains are immediately N-terminal of the Arf GAP domain, and one of these fits the consensus sequence for PtdIns(3,4,5)P3 binding. Here, we tested the hypothesis that PtdIns(3,4,5)P3-dependent recruitment mediated by the first PH domain of ARAP1 regulates the in vivo and in vitro function of ARAP1. We found that PH1 of ARAP1 specifically bound to PtdIns(3,4,5)P3, but with relatively low affinity (≈1.6 μm), and the PH domains did not mediate PtdIns(3,4,5)P3-dependent recruitment to membranes in cells. However, PtdIns(3,4,5)P3 binding to the PH domain stimulated GAP activity and was required for in vivo function of ARAP1 as a regulator of endocytic trafficking of the EGFR. Based on these results, we propose a variation on the model for the function of phosphoinositide-binding PH domains. In our model, ARAP1 is recruited to membranes independently of PtdIns(3,4,5)P3, the subsequent production of which triggers enzymatic activity.Pleckstrin homology (PH)2 domains are a common structural motif encoded by the human genome (1, 2). Approximately 10% of PH domains bind to phosphoinositides. These PH domains are thought to mediate phosphoinositide-dependent recruitment to membranes (13). Most PH domains likely have functions other than or in addition to phosphoinositide binding. For example, PH domains have been found to bind to protein and DNA (412). In addition, some PH domains have been found to be structurally and functionally integrated with adjacent domains (13, 14). A small fraction of PH domain-containing proteins (about 9% of the human proteins) have multiple PH domains arranged in tandem, which have been proposed to function as adaptors but have only been examined in one protein (15, 16). Arf GTPase-activating proteins (GAPs) of the ARAP family are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GAPs with tandem PH domains (17, 18). The function of specific PH domains in regulating Arf GAP activity and for biologic activity has not been described.Arf GAPs are proteins that induce the hydrolysis of GTP bound to Arfs (1923). The Arf proteins are members of the Ras superfamily of GTP-binding proteins (2427). The six Arf proteins in mammals (five in humans) are divided into three classes based on primary sequence: Arf1, -2, and -3 are class 1, Arf4 and -5 are class 2, and Arf6 is class 3 (23, 24, 2729). Class 1 and class 3 Arf proteins have been studied more extensively than class 2. They have been found to regulate membrane traffic and the actin cytoskeleton.The Arf GAPs are a family of proteins with diverse domain structures (20, 21, 23, 30). ARAPs, the most structurally complex of the Arf GAPs, contain, in addition to an Arf GAP domain, the sterile α motif (SAM), five PH, Rho GAP, and Ras association domains (17, 18, 31, 32). The first and second and the third and fourth PH domains are tandem (Fig. 1). The first and third PH domains of the ARAPs fit the consensus for PtdIns(3,4,5)P3 binding (3335). ARAPs have been found to affect actin and membrane traffic (21, 23). ARAP3 regulates growth factor-induced ruffling of porcine aortic endothelial cells (31, 36, 37). The function is dependent on the Arf GAP and Rho GAP domains. ARAP2 regulates focal adhesions, an actin cytoskeletal structure (17). ARAP2 function requires Arf GAP activity and a Rho GAP domain capable of binding RhoA·GTP. ARAP1 has been found to have a role in membrane traffic (18). The protein associates with pre-early endosomes involved in the attenuation of EGFR signals. The function of the tandem PH domains in the ARAPs has not been examined.Open in a separate windowFIGURE 1.ARAP1 binding to phospholipids. A, schematic of the recombinant proteins used in this study. Domain abbreviations: Ank, ankyrin repeat; PLCδ-PH, PH domain of phospholipase C δ; RA, Ras association motif; RhoGAP, Rho GTPase-activating domain. B, ARAP1 phosphoinositide binding specificity. 500 nm PH1-Ank recombinant protein was incubated with sucrose-loaded LUVs formed by extrusion through a 1-μm pore filter. LUVs contained PtdIns alone or PtdIns with 2.5 μm PtdIns(3,4,5)P3, 2.5 μm PtdIns(3)P, 2.5 μm PtdIns(4)P, 2.5 μm PtdIns(5)P, 2.5 μm PtdIns(3,4)P2, 2.5 μm PtdIns(3,5)P2, or 2.5 μm PtdIns(4,5)P2 with a total phosphoinositide concentration of 50 μm and a total phospholipid concentration of 500 μm. Vesicles were precipitated by ultracentrifugation, and associated proteins were separated by SDS-PAGE. The amount of precipitated protein was determined by densitometry of the Coomassie Blue-stained gels with standards on each gel. C, PtdIns(3,4,5)P3-dependent binding of ARAP1 to LUVs. 1 μm PH1-Ank or ArfGAP-Ank recombinant protein was incubated with 1 mm sucrose-loaded LUVs formed by extrusion through a 1-μm pore size filter containing varying concentration of PtdIns(3,4,5)P3. Precipitation of LUVs and analysis of associated proteins were performed as described in B. The average ± S.E. of three independent experiments is presented.Here we investigated the role of the first two PH domains of ARAP1 for catalysis and in vivo function. The first PH domain fits the consensus sequence for PtdIns(3,4,5)P3 binding (3335). The second does not fit a phosphoinositide binding consensus but is immediately N-terminal to the GAP domain. We have previously reported that the PH domain that occurs immediately N-terminal of the Arf GAP domain of ASAP1 is critical for the catalytic function of the protein (38, 39). We tested the hypothesis that the two PH domains of ARAP1 function independently; one recruits ARAP1 to PtdIns(3,4,5)P3-rich membranes, and the other functions with the catalytic domain. As predicted, PH1 interacted specifically with PtdIns(3,4,5)P3, and PH2 did not. However, both PH domains contributed to catalysis independently of recruitment to membranes. None of the PH domains in ARAP1 mediated PtdIns(3,4,5)P3-dependent targeting to plasma membranes (PM). PtdIns(3,4,5)P3 stimulated GAP activity, and the ability to bind PtdIns(3,4,5)P3 was required for ARAP1 to regulate membrane traffic. We propose that ARAP1 is recruited independently of PtdIns(3,4,5)P3 to the PM where PtdIns(3,4,5)P3 subsequently regulates its GAP activity to control endocytic events.  相似文献   

10.
11.
12.
The C-terminal domain of subunit ε of the bacterial FoF1 ATP synthase is reported to be an intrinsic inhibitor of ATP synthesis/hydrolysis activity in vitro, preventing wasteful hydrolysis of ATP under low-energy conditions. Mutants defective in this regulatory domain exhibited no significant difference in growth rate, molar growth yield, membrane potential, or intracellular ATP concentration under a wide range of growth conditions and stressors compared to wild-type cells, suggesting this inhibitory domain is dispensable for growth and survival of Escherichia coli.FoF1 ATP synthases are ubiquitous enzymes that synthesize ATP using a transmembrane electrochemical potential of protons or proton motive force (PMF) generated by the respiratory chain across the cytoplasmic membrane of bacteria, the thylakoid membrane of chloroplasts, or the mitochondrial inner membrane (4, 5, 37). The enzyme consists of two parts: membrane-embedded Fo subcomplex (a complex of subunits a, b, and c in bacteria) and hydrophilic F1 subcomplex (composed of subunits α, β, γ, δ, and ε). The enzyme is also known as a molecular motor, which is composed of the stator subcomplex (α, β, δ, a, and b) and the rotor subcomplex (γ, ε, and c), and its rotation is coupled to ATP synthesis and proton flow across the membrane (20, 31, 52). The reaction of the enzyme is reversible; ATP is hydrolyzed into ADP and inorganic phosphate, the rotor subcomplex rotates in reverse, and protons are extruded to the periplasmic side, resulting in the generation of PMF. Although some bacteria utilize the reverse reaction under particular conditions, the primary function of FoF1 ATP synthase is generation of ATP from the PMF. Therefore, the direction of the activity of FoF1 ATP synthase is regulated to avoid wasteful ATP hydrolysis.Subunit ε in bacterial FoF1 has been known to be an intrinsic inhibitor of F1 and FoF1 complex (18, 21, 23) and is proposed to have a regulatory function (10, 11, 42). Although the inhibitory effects of subunit ε vary among species, in general, ε inhibits ATP hydrolysis activity while repressing ATP synthesis activity to a lesser degree (14, 27). This regulatory function of the ε subunit is mediated almost exclusively by the C-terminal region of ε, which is comprised of two antiparallel α-helices (18, 49, 50). Biochemical and crystallographic studies have revealed that the C-terminal helices can adopt two different conformations (34, 46, 47, 48). In the retracted conformation, the α-helices form a hairpin-like structure and sit on the N-terminal β-sandwich domain of the ε subunit. When the ε subunit exhibits an inhibitory effect, it adopts a more extended conformation in which the C-terminal α-helices extend along the γ subunit, which composes the central stalk. It has also been shown that basic, positively charged residues on the second α-helix of the ε subunit interact with negatively charged residues in the DELSEED segment of subunit β to exert the inhibitory effect (12).Escherichia coli mutants deleted in the entire ε subunit exhibit a reduced growth rate and growth yield, and this effect is proposed to be a result of a deficiency in assembly of the Fo and F1 complexes (21). The N-terminal β-sandwich domain of the ε subunit is responsible for the assembly of Fo and F1 and is therefore important for efficient coupling between proton translocation through Fo and ATP synthesis/hydrolysis in F1 (15, 39). Deletion of the ε subunit leads to dissociation of the FoF1 complex and wasteful ATP hydrolysis by free (cytoplasmic) F1 and dissipation of PMF through free Fo (21, 22, 51).While the importance of the entire ε subunit in the whole-cell physiology of E. coli is fairly well established, the role of the regulatory C-terminal region of ε has received little attention and warrants investigation to determine if the regulatory functions (e.g., inhibition of ATP hydrolysis) observed in vitro are manifested in the physiology of E. coli under various growth conditions. To address this question, we constructed isogenic E. coli mutants that were deleted in the C-terminal region of ε subunit (εDC) and used these strains to compare physiological properties of wild-type versus εDC cells under a wide range of environmental conditions and stressors.  相似文献   

13.
The structure of the membrane integral rotor ring of the proton translocating F1F0 ATP synthase from spinach chloroplasts was determined to 3.8 Å resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c11 rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6–10.8 Å apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu61 in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu61 is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu61 by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation.ATP synthases found in the energy-transducing membranes of bacteria, mitochondria, and chloroplasts catalyze ATP synthesis and ATP hydrolysis coupled with transmembrane proton or sodium ion transport. The enzymes are multi-subunit complexes composed of an extra-membranous catalytic F1 domain and an interconnected integral membrane F0 domain. The hydrophilic F1 domain consists of five different polypeptides with a stoichiometry of α3β3γδϵ. Detailed structural information obtained with the mitochondrial enzyme (13) in combination with biochemical (4), biophysical (5), and single molecule studies (69) revealed that synthesis or hydrolysis of ATP in the F1 domain is accomplished via a rotary catalytic mechanism. In addition to information on the catalytic mechanism, structure analysis and single molecule studies of the mitochondrial or the chloroplast F1 complex have also unraveled the molecular mechanism of several F1-specific inhibitors (1014). Less detailed information is available on the integral membrane F0 domain, which consists of three different polypeptides (a, b, and c) and mediates the transfer of protons or sodium ions across the membrane. Subunits a and b were shown to reside at the periphery of a cylindrical complex formed by multiple copies of the c subunit (1518). The number of c subunits in the cylindrical subcomplex shows substantial variation in different organisms. Ten protomers are found in ATP synthases from yeast, Escherichia coli and Bacillus PS3 (1921), 11 in Ilyobacter tartaricus, Propionigenium modestum, and Clostridium paradoxum (2224), 13 in the thermoalkalophilic Bacillus TA2.TA1 (25), 14 in spinach chloroplasts (26), and 15 in the cyanobacterium Spirulina platensis (27). The structure of isolated subunits a, b, and c from E. coli has been studied by mutagenesis analysis and by NMR spectroscopy in a mixed solvent that was suggested to mimic the membrane environment (2832). These studies showed that subunit a folds with five membrane-spanning helices. The fourth of these helices directly interacts with subunit c and contains a conserved arginine (Arg210), which is thought to be involved in proton transfer (33). Subunit b, which is present in two copies in the intact F0, contains a single transmembrane helix. Cross-linking data support a direct interaction of the two copies of the b subunit (29). Subunit c was studied at two different pH values to obtain the protonated and deprotonated form of a conserved carboxylate (Asp61 in E. coli) that was shown to be essential for proton transport (34). NMR spectroscopy revealed that the isolated c subunit consists of two long hydrophobic membrane spanning segments connected by a short hydrophilic loop (30, 35). This loop is located close to the γ and ϵ subunit on the F1 side of the membrane (36, 37). Low resolution x-ray crystallography, cryo-electron microscopy, and atomic force microscopy showed that the membrane-spanning helices of the multiple copies of subunit c in the intact F0 complex are tightly packed in two concentric rings (19, 22, 26). Atomic resolution of the c ring was recently provided for the Na+-translocating F-type ATPase from I. tartaricus (38) and the related Na+-translocating V-type ATPase from Enterococcus hirae (39). Rotation of the c ring was demonstrated by cross-linking (18), fluorescence studies (40), and single molecule visualization (41, 42). Based on the structural and biochemical information on F1 and F0, different mechanical models have been proposed describing how the rotation of the c ring is coupled to the rotation of the F1 rotor subunits. This rotation in turn drives sequential conformational shifts at the three catalytic β subunits that result in ATP synthesis (4345). Vice versa hydrolysis of ATP in the F1 domain is thought to drive rotation of the γϵc10–15 subcomplex and transports protons or sodium ions across the membrane.Here we describe the crystal structure of the chloroplast c14 rotor, which is the first structure of an isolated c ring rotor from a proton driven ATPase. The structure was solved by molecular replacement using a tetradecameric search model that was generated from a monomer taken from the I. tartaricus c11 structure. The imposition of noncrystallographic symmetry restraints during refinement substantially improved electron density and structure determination.  相似文献   

14.
Codon optimization was used to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli. The expressed enzyme cleaved β-carotene at its central double bond (15,15′) to yield two molecules of all-trans-retinal. The molecular mass of the native purified enzyme was ∼64 kDa as a dimer of 32-kDa subunits. The Km, kcat, and kcat/Km values for β-carotene as substrate were 37 μm, 3.6 min−1, and 97 mm−1 min−1, respectively. The enzyme exhibited the highest activity for β-carotene, followed by β-cryptoxanthin, β-apo-4′-carotenal, α-carotene, and γ-carotene in decreasing order, but not for β-apo-8′-carotenal, β-apo-12′-carotenal, lutein, zeaxanthin, or lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C35 seems to be essential for enzyme activity. The oxygen atom of retinal originated not from water but from molecular oxygen, suggesting that the enzyme was a β-carotene 15,15′-dioxygenase. Although the Blh protein and β-carotene 15,15′-monooxygenases catalyzed the same biochemical reaction, the Blh protein was unrelated to the mammalian β-carotene 15,15′-monooxygenases as assessed by their different properties, including DNA and amino acid sequences, molecular weight, form of association, reaction mechanism, kinetic properties, and substrate specificity. This is the first report of in vitro characterization of a bacterial β-carotene-cleaving enzyme.Vitamin A (retinol) is a fat-soluble vitamin and important for human health. In vivo, the cleavage of β-carotene to retinal is an important step of vitamin A synthesis. The cleavage can proceed via two different biochemical pathways (1, 2). The major pathway is a central cleavage catalyzed by mammalian β-carotene 15,15′-monooxygenases (EC 1.14.99.36). β-Carotene is cleaved by the enzyme symmetrically into two molecules of all-trans-retinal, and retinal is then converted to vitamin A in vivo (35). The second pathway is an eccentric cleavage that occurs at double bonds other than the central 15,15′-double bond of β-carotene to produce β-apo-carotenals with different chain lengths, which are catalyzed by carotenoid oxygenases from mammals, plants, and cyanobacteria (6). These β-apo-carotenals are degraded to one molecule of retinal, which is subsequently converted to vitamin A in vivo (2).β-Carotene 15,15′-monooxygenase was first isolated as a cytosolic enzyme by identifying the product of β-carotene cleavage as retinal (7). The characterization of the enzyme and the reaction pathway from β-carotene to retinal were also investigated (4, 8). The enzyme activity has been found in mammalian intestinal mucosa, jejunum enterocytes, liver, lung, kidney, and brain (5, 9, 10). Molecular cloning, expression, and characterization of β-carotene 15,15′-monooxygenase have been reported from various species, including chickens (11), fruit flies (12), humans (13), mice (14), and zebra fishes (15).Other proteins thought to convert β-carotene to retinal include bacterioopsin-related protein (Brp) and bacteriorhodopsin-related protein-like homolog protein (Blh) (16). Brp protein is expressed from the bop gene cluster, which encodes the structural protein bacterioopsin, consisting of at least three genes as follows: bop (bacterioopsin), brp (bacteriorhodopsin-related protein), and bat (bacterioopsin activator) (17). brp genes were reported in Haloarcula marismortui (18), Halobacterium sp. NRC-1 (19), Halobacterium halobium (17), Haloquadratum walsbyi, and Salinibacter ruber (20). Blh protein is expressed from the proteorhodopsin gene cluster, which contains proteorhodopsin, crtE (geranylgeranyl-diphosphate synthase), crtI (phytoene dehydrogenase), crtB (phytoene synthase), crtY (lycopene cyclase), idi (isopentenyl diphosphate isomerase), and blh gene (21). Sources of blh genes were previously reported in Halobacterium sp. NRC-1 (19), Haloarcula marismortui (18), Halobacterium salinarum (22), uncultured marine bacterium 66A03 (16), and uncultured marine bacterium HF10 49E08 (21). β-Carotene biosynthetic genes crtE, crtB, crtI, crtY, ispA, and idi encode the enzymes necessary for the synthesis of β-carotene from isopentenyl diphosphate, and the Idi, IspA, CrtE, CrtB, CrtI, and CrtY proteins have been characterized in vitro (2328). Blh protein has been proposed to catalyze or regulate the conversion of β-carotene to retinal (29, 30), but there is no direct proof of the enzymatic activity.In this study, we used codon optimization to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli, and we performed a detailed biochemical and enzymological characterization of the expressed Blh protein. In addition, the properties of the enzyme were compared with those of mammalian β-carotene 15,15′-monooxygenases.  相似文献   

15.
Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) δ- and ζ-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by ∼2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Gαi-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 μm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase δ and ζ attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 μm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.The airway epithelium is the site of first contact for inhaled environmental stimuli, functions as a physical barrier to environmental insult, and is an essential part of innate immunity. Epithelial barrier disruption is caused by inhaled allergens, dust, and irritants, resulting in inflammation, bronchoconstriction, and edema as seen in asthma and other respiratory diseases (14). Furthermore, increased epithelial permeability also results in para-cellular leakage of large proteins, such as albumin, immunoglobulin G, and polymeric immunoglobulin A, into the airway lumen (5, 6). The epithelial cell-cell junctional complex is composed of tight junctions, adherens junctions, and desmosomes. These adherens junctions play a pivotal role in regulating the activity of the entire junctional complex because the formation of adherens junctions subsequently leads to the formation of other cell-cell junctions (79). The major adhesion molecules in the adherens junctions are the cadherins. E-cadherin is a member of the cadherin family that mediates calcium-dependent cell-cell adhesion. The N-terminal ectodomain of E-cadherin contains homophilic interaction specificity, and the cytoplasmic domain binds to catenins, which interact with actin (1013). Plasma membrane localization of E-cadherin is critical for the maintenance of epithelial cell-cell junctions and airway epithelium integrity (7, 10, 14). A decrease of adhesive properties of E-cadherin is related to the loss of differentiation and the subsequent acquisition of a higher motility and invasiveness of epithelial cells (10, 14, 15). Dislocation or shedding of E-cadherin in the airway epithelium induces epithelial shedding and increases airway permeability in lung airway diseases (10, 14, 16). In an ovalbumin-challenged guinea pig model of asthma, it has been demonstrated that E-cadherin is dislocated from the lateral margins of epithelial cells (10). Histamine increases airway para-cellular permeability and results in an increased susceptibility of airway epithelial cells to adenovirus infection by interrupting E-cadherin adhesion (14). Serine phosphorylation of E-cadherin by casein kinase II, GSK-3β, and PKD1/PKC2 μ enhanced E-cadherin-mediated cell-cell adhesion in NIH3T3 fibroblasts and LNCaP prostate cancer cells (11, 17). However, the regulation and mechanism by which E-cadherin is localized within the pulmonary epithelium is not fully known, particularly during airway remodeling.LPA, a naturally occurring bioactive lipid, is present in body fluids, such as plasma, saliva, follicular fluid, malignant effusions, and bronchoalveolar lavage (BAL) fluids (1820). Six distinct high affinity cell-surface LPA receptors, LPA-R1–6, have been cloned and described in mammals (2126). Extracellular activities of LPA include cell proliferation, motility, and cell survival (2730). LPA exhibits a wide range of effects on differing cell types, including pulmonary epithelial, smooth muscle, fibroblasts, and T cells (3135). LPA augments migration and cytokine synthesis in lymphocytes and induces chemotaxis of Jurkat T cells through Matrigel membranes (34). LPA induces airway smooth muscle cell contractility, proliferation, and airway repair and remodeling (35, 36). LPA also potently stimulates IL-8 (31, 3739), IL-13 receptor α2 (IL-13Rα2) (40), and COX-2 gene expression and prostaglandin E2 release (41) in HBEpCs. Prostaglandin E2 and IL-13Rα2 have anti-inflammatory properties in pulmonary inflammation (42, 43). These results suggest that LPA may play a protective role in lung disease by stimulating an innate immune response while simultaneously attenuating the adaptive immune response. Furthermore, intravenous injection with LPA attenuated bacterial endotoxin-induced plasma tumor necrosis factor-α production and myeloperoxidase activity in the lungs of mice (44), suggesting an anti-inflammatory role for LPA in a murine model of sepsis.We have reported that LPA induces E-cadherin/c-Met accumulation in cell-cell contacts and increases TER in HBEpCs (45). Here, for the first time, we report that LPA-induced increases in TER are dependent on PKCδ, PKCζ, and FAK-mediated E-cadherin accumulation at cell-cell junctions. Furthermore, we demonstrate that post-treatment of LPA rescues LPS-induced airway epithelial disruption in vitro and reduces E-cadherin shedding in a murine model of ALI. This study identifies the molecular mechanisms linking the LPA and LPA receptors to maintaining normal pulmonary epithelium barrier function, which is critical in developing novel therapies directed at ameliorating pulmonary diseases.  相似文献   

16.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

17.
Glycoprotein structure determination and quantification by MS requires efficient isolation of glycopeptides from a proteolytic digest of complex protein mixtures. Here we describe that the use of acids as ion-pairing reagents in normal-phase chromatography (IP-NPLC) considerably increases the hydrophobicity differences between non-glycopeptides and glycopeptides, thereby resulting in the reproducible isolation of N-linked high mannose type and sialylated glycopeptides from the tryptic digest of a ribonuclease B and fetuin mixture. The elution order of non-glycopeptides relative to glycopeptides in IP-NPLC is predictable by their hydrophobicity values calculated using the Wimley-White water/octanol hydrophobicity scale. O-linked glycopeptides can be efficiently isolated from fetuin tryptic digests using IP-NPLC when N-glycans are first removed with PNGase. IP-NPLC recovers close to 100% of bacterial N-linked glycopeptides modified with non-sialylated heptasaccharides from tryptic digests of periplasmic protein extracts from Campylobacter jejuni 11168 and its pglD mutant. Label-free nano-flow reversed-phase LC-MS is used for quantification of differentially expressed glycopeptides from the C. jejuni wild-type and pglD mutant followed by identification of these glycoproteins using multiple stage tandem MS. This method further confirms the acetyltransferase activity of PglD and demonstrates for the first time that heptasaccharides containing monoacetylated bacillosamine are transferred to proteins in both the wild-type and mutant strains. We believe that IP-NPLC will be a useful tool for quantitative glycoproteomics.Protein glycosylation is a biologically significant and complex post-translational modification, involved in cell-cell and receptor-ligand interactions (14). In fact, clinical biomarkers and therapeutic targets are often glycoproteins (59). Comprehensive glycoprotein characterization, involving glycosylation site identification, glycan structure determination, site occupancy, and glycan isoform distribution, is a technical challenge particularly for quantitative profiling of complex protein mixtures (1013). Both N- and O-glycans are structurally heterogeneous (i.e. a single site may have different glycans attached or be only partially occupied). Therefore, the MS1 signals from glycopeptides originating from a glycoprotein are often weaker than from non-glycopeptides. In addition, the ionization efficiency of glycopeptides is low compared with that of non-glycopeptides and is often suppressed in the presence of non-glycopeptides (1113). When the MS signals of glycopeptides are relatively high in simple protein digests then diagnostic sugar oxonium ion fragments produced by, for example, front-end collisional activation can be used to detect them. However, when peptides and glycopeptides co-elute, parent ion scanning is required to selectively detect the glycopeptides (14). This can be problematic in terms of sensitivity, especially for detecting glycopeptides in digests of complex protein extracts.Isolation of glycopeptides from proteolytic digests of complex protein mixtures can greatly enhance the MS signals of glycopeptides using reversed-phase LC-ESI-MS (RPLC-ESI-MS) or MALDI-MS (1524). Hydrazide chemistry is used to isolate, identify, and quantify N-linked glycopeptides effectively, but this method involves lengthy chemical procedures and does not preserve the glycan moieties thereby losing valuable information on glycan structure and site occupancy (1517). Capturing glycopeptides with lectins has been widely used, but restricted specificities and unspecific binding are major drawbacks of this method (1821). Under reversed-phase LC conditions, glycopeptides from tryptic digests of gel-separated glycoproteins have been enriched using graphite powder medium (22). In this case, however, a second digestion with proteinase K is required for trimming down the peptide moieties of tryptic glycopeptides so that the glycopeptides (typically <5 amino acid residues) essentially resemble the glycans with respect to hydrophilicity for subsequent separation. Moreover, the short peptide sequences of the proteinase K digest are often inadequate for de novo sequencing of the glycopeptides.Glycopeptide enrichment under normal-phase LC (NPLC) conditions has been demonstrated using various hydrophilic media and different capture and elution conditions (2328). NPLC allows either direct enrichment of peptides modified by various N-linked glycan structures using a ZIC®-HILIC column (2327) or targeting sialylated glycopeptides using a titanium dioxide micro-column (28). However, NPLC is neither effective for enriching less hydrophilic glycopeptides, e.g. the five high mannose type glycopeptides modified by 7–11 monosaccharide units from a tryptic digest of ribonuclease b (RNase B), nor for enriching O-linked glycopeptides of bovine fetuin using a ZIC-HILIC column (23). The use of Sepharose medium for enriching glycopeptides yielded only modest recovery of glycopeptides (28). In addition, binding of hydrophilic non-glycopeptides with these hydrophilic media contaminates the enriched glycopeptides (23, 28).We have recently developed an ion-pairing normal-phase LC (IP-NPLC) method to enrich glycopeptides from complex tryptic digests using Sepharose medium and salts or bases as ion-pairing reagents (29). Though reasonably effective the technique still left room for significant improvement. For example, the method demonstrated relatively modest glycopeptide selectivity, providing only 16% recovery for high mannose type glycopeptides (29). Here we report on a new IP-NPLC method using acids as ion-pairing reagents and polyhydroxyethyl aspartamide (A) as the stationary phase for the effective isolation of tryptic glycopeptides. The method was developed and evaluated using a tryptic digest of RNase B and fetuin mixture. In addition, we demonstrate that O-linked glycopeptides can be effectively isolated from a fetuin tryptic digest by IP-NPLC after removal of the N-linked glycans by PNGase F.The new IP-NPLC method was used to enrich N-linked glycopeptides from the tryptic digests of protein extracts of wild-type (wt) and PglD mutant strains of Campylobacter jejuni NCTC 11168. C. jejuni has a unique N-glycosylation system that glycosylates periplasmic and inner membrane proteins containing the extended N-linked sequon, D/E-X-N-X-S/T, where X is any amino acid other than proline (3032). The N-linked glycan of C. jejuni has been previously determined to be GalNAc-α1,4-GalNAc-α1,4-[Glcβ1,3]-GalNAc-α1,4-GalNAc-α1,4-GalNAc-α1,3-Bac-β1 (BacGalNAc5Glc residue mass: 1406 Da), where Bac is 2,4-diacetamido-2,4,6-trideoxyglucopyranose (30). In addition, the glycan structure of C. jejuni is conserved, unlike in eukaryotic systems (3032). IP-NPLC recovered close to 100% of the bacterial N-linked glycopeptides with virtually no contamination of non-glycopeptides. Furthermore, we demonstrate for the first time that acetylation of bacillosamine is incomplete in the wt using IP-NPLC and label-free MS.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号