共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Qin Wang Dhaarmini Rajshankar Donald R. Branch Katherine A. Siminovitch Maria Teresa Herrera Abreu Gregory P. Downey Christopher A. McCulloch 《The Journal of biological chemistry》2009,284(31):20763-20772
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) α in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPα to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPα was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPα was required for the association of PTPα with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPα acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.The interleukin-1 (IL-1)3 family of pro-inflammatory cytokines mediates host responses to infection and injury. Impaired control of IL-1 signaling leads to chronic inflammation and destruction of extracellular matrices (1, 2), as seen in pathological conditions such as pulmonary fibrosis (3), rheumatoid arthritis (4, 5), and periodontitis (6). IL-1 elicits multiple signaling programs, some of which trigger Ca2+ release from the endoplasmic reticulum (ER) as well as expression of multiple cytokines and inflammatory factors including c-Fos and c-Jun (7, 8), and matrix metalloproteinases (9, 10), which mediate extracellular matrix degradation via mitogen-activated protein kinase-regulated pathways (11).In anchorage-dependent cells including fibroblasts and chondrocytes, focal adhesions (FAs) are required for IL-1-induced Ca2+ release from the ER and activation of ERK (12–14). FAs are actin-enriched adhesive domains composed of numerous (>50) scaffolding and signaling proteins (15–17). Many FA proteins are tyrosine-phosphorylated, including paxillin, focal adhesion kinase, and src family kinases, all of which are crucial for the assembly and disassembly of FAs (18–21). Protein-tyrosine phosphorylation plays a central role in regulating many cellular processes including adhesion (22, 23), motility (24), survival (25), and signal transduction (26–29). Phosphorylation of proteins by kinases is balanced by protein-tyrosine phosphatases (PTP), which can enhance or attenuate downstream signaling by dephosphorylation of tyrosine residues (30–32).PTPs can be divided into two main categories: receptor-like and intracellular PTPs (33). Two receptor-like PTPs have been localized to FA (leukocyte common antigen-related molecule and PTPα). Leukocyte common antigen-related molecule can dephosphorylate and mediate degradation of p130cas, which ultimately leads to cell death (34, 35). PTPα contains a heavily glycosylated extracellular domain, a transmembrane domain, and two intracellular phosphatase domains (33, 36). The amino-terminal domain predominantly mediates catalytic activity, whereas the carboxyl-terminal domain serves a regulatory function (37, 38). PTPα is enriched in FA (23) and is instrumental in regulating FA dynamics (39) via activation of c-Src/Fyn kinases by dephosphorylating the inhibitory carboxyl tyrosine residue, namely Tyr529 (22, 40–42) and facilitation of integrin-dependent assembly of Src-FAK and Fyn-FAK complexes that regulate cell motility (43). Although PTPα has been implicated in formation and remodeling of FAs (44, 45), the role of PTPα in FA-dependent signaling is not defined.Ca2+ release from the ER is a critical step in integrin-dependent IL-1 signal transduction and is required for downstream activation of ERK (13, 46). The release of Ca2+ from the ER depends on the inositol 1,4,5-triphosphate receptor (IP3R), which is an IP3-gated Ca2+ channel (47). All of the IP3R subtypes (subtypes 1–3) have been localized to the ER, as well as other the plasma membrane and other endomembranes (48–50). Further, IP3R may associate with FAs, enabling the anchorage of the ER to FAs (51, 52). However, the molecule(s) that provide the structural link for this association has not been defined.FA-restricted, IL-1-triggered signal transduction in anchorage-dependent cells may rely on interacting proteins that are enriched in FAs and the ER (53). Here, we examined the possibility that PTPα associates with c-Src and IP3R to functionally link FAs to the ER, thereby enabling IL-1 signal transduction. 相似文献
3.
Lei Zhang Hui Zhao Yu Qiu Horace H. Loh Ping-Yee Law 《The Journal of biological chemistry》2009,284(4):1990-2000
Recent studies have revealed that in G protein-coupled receptor signalings
switching between G protein- and β-arrestin (βArr)-dependent
pathways occurs. In the case of opioid receptors, the signal is switched from
the initial inhibition of adenylyl cyclase (AC) to an increase in AC activity
(AC activation) during prolonged agonist treatment. The mechanism of such AC
activation has been suggested to involve the switching of G proteins activated
by the receptor, phosphorylation of signaling molecules, or receptor-dependent
recruitment of cellular proteins. Using protein kinase inhibitors, dominant
negative mutant studies and mouse embryonic fibroblast cells isolated from Src
kinase knock-out mice, we demonstrated that μ-opioid receptor
(OPRM1)-mediated AC activation requires direct association and activation of
Src kinase by lipid raft-located OPRM1. Such Src activation was independent of
βArr as indicated by the ability of OPRM1 to activate Src and AC after
prolonged agonist treatment in mouse embryonic fibroblast cells lacking both
βArr-1 and -2. Instead the switching of OPRM1 signals was dependent on
the heterotrimeric G protein, specifically Gi2 α-subunit.
Among the Src kinase substrates, OPRM1 was phosphorylated at Tyr336
within NPXXY motif by Src during AC activation. Mutation of this Tyr
residue, together with mutation of Tyr166 within the DRY motif to
Phe, resulted in the complete blunting of AC activation. Thus, the recruitment
and activation of Src kinase by OPRM1 during chronic agonist treatment, which
eventually results in the receptor tyrosine phosphorylation, is the key for
switching the opioid receptor signals from its initial AC inhibition to
subsequent AC activation.Classical G protein-coupled receptor
(GPCR)2 signaling
involves the activation of specific heterotrimeric G proteins and the
subsequent dissociation of α- and βγ-subunits. These G
protein subunits serve as the activators and/or inhibitors of several effector
systems, including adenylyl cyclases, phospholipases, and ion channels
(1). However, recent studies
have shown that GPCR signaling deviates from such a classical linear model.
For example, in kidney and colonic epithelial cells, protease-activated
receptor 1 can transduce its signals through either Gαi/o or
Gαq subunits via inhibition of small GTPase RhoA or
activation of RhoD. Thus, RhoA and RhoD act as molecular switches between the
negative and positive signaling activity of protease-activated receptor 1
(2). Another example is the
ability of β2-adrenergic receptor to switch from
Gs-dependent pathways to non-classical signaling pathways by
coupling to pertussis toxin-sensitive Gi proteins in a
cAMP-dependent protein kinase/protein kinase C phosphorylation-dependent
manner. In this case, the phosphorylation-induced switch in G protein coupling
provides the receptor access to alternative signaling pathways. For
β2-adrenergic receptors, this leads to a
Gi-dependent activation of MAP kinase
(3,
4). Furthermore the involvement
of protein scaffolds, such as β-arrestins in the MAP kinase cascade,
could also alter the GPCR signaling
(5–8).
Hence the formation of “signaling units” or
“receptosomes” would influence the GPCR signaling process and
destination.For opioid receptors, which are members of the rhodopsin GPCR subfamily
receptors, signal switching is also observed. Normally opioid receptors
inhibit AC activity, activate the MAP kinases and Kir3 K+ channels,
inhibit the voltage-dependent Ca2+ channels, and regulate other
effectors such as phospholipase C
(9). However, during prolonged
agonist treatment, not only is there a blunting of these cellular responses
but also a compensatory increase in intracellular cAMP level, which is
particularly significant upon the removal of the agonist or the addition of an
antagonist such as naloxone
(10–12).
This compensatory adenylyl cyclase activation phenomenon has been postulated
to be responsible for the development of drug tolerance and dependence
(13). The observed change from
receptor-mediated AC inhibition to receptor-mediated AC activation reflects
possible receptor signal switching. Although the exact mechanism for such
signal changes has yet to be elucidated, activation of specific protein
kinases and subsequent phosphorylation of AC isoforms
(14,
15) and other signaling
molecules (16) have been
suggested to be the key for observed AC activation. Among all the protein
kinases studied, involvement of protein kinase C, MAP kinase, and Raf-1 has
been implicated in the activation of AC
(17–19).
Alternative mechanisms, such as agonist-induced receptor internalization and
the increase in the constitutive activities of the receptor, also have been
suggested to play a role in increased AC activity after prolonged opioid
agonist treatment (20).
Earlier studies also implicated the switching of the opioid receptor from
Gi/Go to Gs coupling during chronic agonist
treatment (21). Regardless of
the mechanism, the exact molecular events that lead to the switching of opioid
receptor from an inhibitory response to a stimulatory response remain
elusive.Src kinases, which are members of the nonreceptor tyrosine kinase family,
have been implicated in GPCR function because several Src family members such
as cSrc, Fyn, and Yes have been reported to be activated by several GPCRs,
including β2-
(22) and β3
(23)-adrenergic,
M2- (24) and
M3 (25)-muscarinic,
and bradykinin receptors (26).
The GPCRs that are capable of activating Src predominantly couple to
Gi/o family G proteins
(27). Src kinases appear to
associate with, and be activated by, GPCRs themselves either through direct
interaction with intracellular receptor domains or by binding to
GPCR-associated proteins, such as G protein subunits or β-arrestins
(27). Src kinase has been
reported to be activated by κ-
(28) and δ
(29)-opioid receptors and
regulate the c-Jun kinase and MAP kinase activities. Src kinase within the
nucleus accumbens has been implicated in the rewarding effect and
hyperlocomotion induced by morphine in mice
(30). However, it is not clear
whether the Src kinase is activated and involved in the signal transduction in
AC activation after chronic opioid agonist administration.Previously we reported that the lipid raft location of the receptor and the
Gαi2 proteins are two prerequisites for the observed increase
in AC activity during prolonged agonist treatment
(31,
32). Because various protein
kinases including Src kinases and G proteins have been shown to be enriched in
lipid rafts (33), the roles of
these cellular proteins in the eventual switching of opioid receptor signals
from inhibition to stimulation of AC activity were examined in the current
studies. We were able to demonstrate that the association with and subsequent
activation of Src kinase by the μ-opioid receptor (OPRM1), which leads to
eventual tyrosine phosphorylation of OPRM1, are the cellular events required
for the switching of opioid receptor signaling upon chronic agonist
treatment. 相似文献
4.
5.
Yu He Yonghong Guo Yun Zhou Ying Zhang Chao Fan Guangxi Ji Yu Wang Zhiyuan Ma Jianqi Lian Chunqiu Hao Zhi Q. Yao Zhansheng Jia 《PloS one》2014,9(12)
Objectives
CD100, also known as Sema4D, is a member of the semaphorin family and has important regulatory functions that promote immune cell activation and responses. The role of CD100 expression on B cells in immune regulation during chronic hepatitis C virus (HCV) infection remains unclear.Materials and Methods
We longitudinally investigated the altered expression of CD100, its receptor CD72, and other activation markers CD69 and CD86 on B cells in 20 chronic HCV-infected patients before and after treatment with pegylated interferon-alpha (Peg-IFN-α) and ribavirin (RBV) by flow cytometry.Results
The frequency of CD5+ B cells as well as the expression levels of CD100, CD69 and CD86 was significantly increased in chronic HCV patients and returned to normal in patients with sustained virological response after discontinuation of IFN-α/RBV therapy. Upon IFN-α treatment, CD100 expression on B cells and the two subsets was further up-regulated in patients who achieved early virological response, and this was confirmed by in vitro experiments. Moreover, the increased CD100 expression via IFN-α was inversely correlated with the decline of the HCV-RNA titer during early-phase treatment.Conclusions
Peripheral B cells show an activated phenotype during chronic HCV infection. Moreover, IFN-α therapy facilitates the reversion of disrupted B cell homeostasis, and up-regulated expression of CD100 may be indirectly related to HCV clearance. 相似文献6.
Yogesh S. Sanghvi Krishna G. Upadhya N. Kent Dalley Roland K. Robins Ganapathi R. Revankar 《Nucleosides, nucleotides & nucleic acids》2013,32(4):737-759
Abstract Several 4-substituted-1-β-D-ribofuranosyl-3-hydroxypyrazoles were prepared as structural analogs of pyrazofurin. Glycosylation of the TMS derivative of ethyl 3(5)-hydroxypyrazole-4-carboxylate (3) with 1-0-acetyl-2,3,5-tri-0-benzoyl-D-ribofuranose in the presence of TMS-triflate gave predominantly ethyl 3-hydroxy-1-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)pyrazole-4-carboxylate (4a), which on subsequent ammonolysis furnished 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (5). Benzylation of 4a with benzyl bromide and further ammonolysis gave 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (8a). Catalytic (Pd/C) hydrogenation of 8a afforded yet another high yield route to 5. Saponification of the ester function of ethyl 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxylate (7b) gave the corresponding 4-carboxylic acid (6a). Phosphorylation of 8a and subsequent debenzylation of the intermediate 11a gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide 5′-phosphate (11b). Dehydration of 3-benzyloxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carboxamide (8b) with POCl3 provided the corresponding 4-carbonitrile derivative (10a), which on debenzylation with Cl3SiI gave 3-hydroxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile (13). Reaction of 13 with H2S/pyridine and subsequent deacetylation gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-thiocarboxamide (12b). Similarly, treatment of 13 with NH2OH afforded 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamidoxime (14a), which on catalytic (Pd/C) hydrogenation gave the corresponding 4-carboxamidine derivative (14b). The structural assignment of these pyrazole ribonucleosides was made by single-crystal X-ray analysis of 6a. None of these compounds exhibited any significant antitumor or antiviral activity in cell culture. 相似文献
7.
Meiling Huang Yaling Wu Na Wang Ziwei Wang Pan Zhao Xiaoda Yang 《Biological trace element research》2014,157(3):242-248
Vanadium compounds exhibit effective hypoglycemic activity in both type I and type II diabetes mellitus. However, there was one argument that the hypoglycemic action of vanadium compounds could be attributable to the suppression of feeding—one common toxic aspect of vanadium compounds. To clarify this question, we investigated in this work the effect of a vanadyl complex, BSOV (bis((5-hydroxy-4-oxo-4H-pyran-2-yl)methyl-2-hydroxy-benzoatato) oxovanadium (IV)), on diabetic obese (db/db) mice at a low dose (0.05 mmol/kg/day) when BSOV did not inhibit feeding. The experimental results showed that this dose of BSOV effectively normalized the blood glucose level in diabetic mice without affecting the body weight growth. Western blotting assays on the white adipose tissue of db/db mice further indicated that BSOV treatment significantly improved expression of peroxisome proliferator-activated receptor γ (PPARγ) and activated AMP-activated protein kinase (AMPK). In addition, vanadium treatment caused a significant suppression of phosphorylation of c-Jun N-terminal protein kinase (JNK), which plays a key role in insulin-resistance in type II diabetes. This is the first evidence that the mechanism of insulin enhancement action involves interaction of vanadium compounds with JNK. Overall, the present work indicated that vanadium compounds exhibit antidiabetic effects irrelevant to food intake suppression but by modulating the signal transductions of diabetes and other metabolic disorders. 相似文献
8.
9.
Kenshi Yamasaki Jun Muto Kristen R. Taylor Anna L. Cogen David Audish John Bertin Ethan P. Grant Anthony J. Coyle Amirhossein Misaghi Hal M. Hoffman Richard L. Gallo 《The Journal of biological chemistry》2009,284(19):12762-12771
Inflammation under sterile conditions is a key event in autoimmunity and
following trauma. Hyaluronan, a glycosaminoglycan released from the
extracellular matrix after injury, acts as an endogenous signal of trauma and
can trigger chemokine release in injured tissue. Here, we investigated whether
NLRP3/cryopyrin, a component of the inflammasome, participates in the
inflammatory response to injury or the cytokine response to hyaluronan. Mice
with a targeted deletion in cryopyrin showed a normal increase in Cxcl2 in
response to sterile injuries but had decreased inflammation and release of
interleukin-1β (IL-1β). Similarly, the addition of hyaluronan to
macrophages derived from cryopyrin-deficient mice increased release of Cxcl2
but did not increase IL-1β release. To define the mechanism of
hyaluronan-mediated activation of cryopyrin, elements of the hyaluronan
recognition process were studied in detail. IL-1β release was inhibited
in peritoneal macrophages derived from CD44-deficient mice, in an MH-S
macrophage cell line treated with antibodies to CD44, or by inhibitors of
lysosome function. The requirement for CD44 binding and hyaluronan
internalization could be bypassed by intracellular administration of
hyaluronan oligosaccharides (10–18-mer) in lipopolysaccharide-primed
macrophages. Therefore, the action of CD44 and subsequent hyaluronan
catabolism trigger the intracellular cryopyrin → IL-1β pathway.
These findings support the hypothesis that hyaluronan works through IL-1β
and the cryopyrin system to signal sterile inflammation.Inflammation, as defined by changes in vascular permeability and leukocyte
recruitment, is an essential step for the control of microbial invasion.
Specific microbial products trigger this process through a diverse array of
innate immune pattern recognition receptors. However, an inflammatory response
independent of infection is also an important process for maintenance of
biological homeostasis. For example, normal wound healing requires a
controlled inflammatory response to enable the recruitment of monocytes and
the release of growth factors required for repair. This response can occur in
the absence of microbial stimuli. Furthermore, inflammation and the release of
proinflammatory mediators is also associated with many diseases such as
rheumatoid arthritis and Crohn disease
(1). These diseases are not
well understood in terms of their triggers but rather are described by the
subsequent release of proinflammatory mediators. Identification of the
triggers of sterile inflammation represents an important goal with immediate
diagnostic and therapeutic significance.Recent work has begun to elucidate pathways of inflammation that occur in
the absence of microbial stimuli. Stress signals such as heat-shock proteins,
intracellular components of necrotic cells not normally seen by immune cells,
and components of the extracellular matrix have all been implicated as
endogenous triggers of injury
(2–4).
Among this group is the glycosaminoglycan hyaluronan
(HA),6 an important
structural component of the extracellular matrix that is also a common
component of bacterial surfaces. HA is synthesized at the cell surface and
typically exists as a high molecular mass polymer greater than 106
Da and composed of repeating disaccharide units of
N-acetylglucosamine and glucuronic acid
(5,
6). Unlike other
glycosaminoglycans such as heparan sulfate or chondroitin sulfates that encode
specific activity by use of a diverse disaccharide sequence, HA is not
sulfated or epimerized, and only changes in HA size, concentration, and
location affect function.We have previously developed murine models of sterile injury to identify
the innate elements that recognize and mediate sterile inflammation
(7). Our results demonstrated
that (a) the initiation of a sterile intrinsic inflammatory process
is dependent on TLR4 activation, (b) sterile injury induces HA
accumulation at the injured site, and (c) sterile intrinsic
inflammation resembles signaling events that are activated by HA. Furthermore,
we have defined a novel alternative recognition complex for HA that involves
TLR4, MD-2, and CD44 (7). Taken
together with other work associating HA and innate pattern recognition
(4,
8–10),
these observations have provided new insight into mechanisms responsible for
sterile inflammation.Recently, the NLR (nucleotide-binding domain and leucine rich
repeat-containing) family has been extensively analyzed as a group of
intracellular pattern recognition receptors
(11). NLRs have a leucine-rich
repeat that recognizes pathogen-associated molecular patterns including
bacterial cell wall components and viral nucleic acids. NOD2 and NLR family,
pyrin containing 3 (NLRP3)/cryopyrin are two of the best
characterized NLRs. NOD2 recognizes the bacterial peptidoglycan-derived
molecule muramyl dipeptide and activates the NF-κB pathway to induce
inflammatory responses (12).
Mutations of the NOD2 gene were identified in individuals with
chronic inflammatory disorders such as Crohn disease
(13,
14) and Blau syndrome
(15). Mouse knockin mutants of
NOD2, which have the same mutation in NOD2 as human patients
with Crohn disease, showed elevated proinflammatory cytokines following
muramyl dipeptide challenge or dextran sodium sulfate-induced bowel
inflammation (16).
NLRP3, also known as cyropyrin, CIAS1, NALP3, PYPAF1, forms
an “inflammasome” with ASC (apoptosis-associated speck-like
protein containing a CARD) and caspase-1 to convert pro-IL-1β to active
IL-1β (17). Mutations in
NLRP3 were identified in individuals with familial cold
autoinflammatory syndrome (FCAS), Muckle-Wells syndrome, and neonatal onset
multisystem inflammatory disease
(18–20).
These individuals have recurrent or chronic inflammatory symptoms, including
fever, arthritis, and a urticaria-like eruption characterized by neutrophilic
infiltration. In FCAS, symptoms can be elicited by cold provocation by a
mechanism that appears to be mediated through the skin
(15,
21).Because disorders associated with mutations in NLRP3 are examples
of inflammation under sterile conditions and HA has been shown to be a trigger
of sterile inflammation, we sought to further understand the mechanism of the
response to HA by examining the role of cryopyrin during injury and after
exposure to HA. Our results show that cryopyrin and IL-1β are integral to
sterile inflammation and the response to HA. These observations provide new
insight into the function of HA as a “danger signal” of
injury. 相似文献
10.
Stephen J. Wort Misako Ito Pai-Chien Chou Shaun K. Mc Master Rekha Badiger Elen Jazrawi Patricia de Souza Timothy W. Evans Jane A. Mitchell Liao Pinhu Kaz Ito Ian M. Adcock 《The Journal of biological chemistry》2009,284(36):24297-24305
Endothelin-1 (ET-1) is a potent vasoconstrictor and co-mitogen for vascular smooth muscle and is implicated in pulmonary vascular remodeling and the development of pulmonary arterial hypertension. Vascular smooth muscle is an important source of ET-1. Here we demonstrate synergistic induction of preproET-1 message RNA and release of mature peptide by a combination of tumor necrosis factor α (TNFα) and interferon γ (IFNγ) in primary human pulmonary artery smooth muscle cells. This induction was prevented by pretreatment with the histone acetyltransferase inhibitor anacardic acid. TNFα induced a rapid and prolonged pattern of nuclear factor (NF)-κB p65 subunit activation and binding to the native preproET-1 promoter. In contrast, IFNγ induced a delayed activation of interferon regulatory factor-1 without any effect on NF-κB p65 nuclear localization or consensus DNA binding. However, we found cooperative p65 binding and histone H4 acetylation at distinct κB sites in the preproET-1 promoter after stimulation with both TNFα and IFNγ. This was associated with enhanced recruitment of RNA polymerase II to the ATG start site and read-through of the ET-1 coding region. Understanding such mechanisms is crucial in determining the key control points in ET-1 release. This has particular relevance to developing novel treatments targeted at the inflammatory component of pulmonary vascular remodeling.Endothelin-1 is a 21-amino acid peptide which is known to be both a potent vasoconstrictor and mitogen for vascular smooth muscle (1, 2). It is released as a 38-amino acid precursor (Big ET-12) before cleavage to the mature ET-1 form. As such it has been implicated in the pathogenesis of vascular disease and is particularly associated with pulmonary arterial hypertension (3). Indeed, several endothelin receptor antagonists are now approved for the treatment of pulmonary arterial hypertension (4). However, endothelin receptor antagonists as a class are associated with potentially serious side effects (4), making new treatments aimed at blocking ET-1 synthesis an attractive alternative.Although endothelial cells are thought to be the main source of ET-1 release, several groups including our own have shown that ET-1 can be released from the more numerous vascular smooth muscle cells (5–10). The vascular pathology observed in pulmonary arterial hypertension is propagated by inflammation, and circulating levels of cytokines including tumor necrosis factor α (TNFα) are elevated in patients with pulmonary arterial hypertension (11–15). In many cell types cytokines mediate their biological effects at least in part by the activation of the nuclear factor κB (NF-κB) pathway (16), and a role for NF-κB in pulmonary arterial hypertension has been proposed (17). In addition, we have shown previously that a combination of TNFα and interferon γ (IFNγ) stimulates human pulmonary artery smooth muscle (HPASM) cells to release ET-1 (18). However, the mechanisms underlying this effect are unknown.The preproET-1 promoter region has been shown experimentally to possess binding sites for nuclear factor (NF)-1 and phorbol ester-sensitive c-Fos and c-Jun complexes (19), acute phase reactant regulatory proteins, and binding sites for AP-1 and GATA-2 (20–22). In addition, binding sites for interferon regulatory factor-1 (IRF-1) and NF-κB are predicted by Transfac analysis (23). The close proximity of the IRF-1 site and one of the NF-κB sites is characteristic of genes that are regulated by the synergistic action of TNFα and IFNγ, such as interleukin-6 (IL-6) and intercellular adhesion molecule-1 (24, 25), although ET-1 has not previously been recognized in this group.Our aims were, therefore, to investigate the role of NF-κB in ET-1 release by primary HPASM cells. In addition, we were interested in the role of histone acetylation in the epigenetic control of the ET-1 production. Understanding these novel mechanisms will allow a greater understanding of the pathogenesis of vascular remodeling in pulmonary vessels and aid in the development of new treatment strategies aimed at blocking synthesis of ET-1. 相似文献
11.
Fontaine KR Robertson HT Holst C Desmond R Stunkard AJ Sørensen TI Allison DB 《PloS one》2011,6(11):e27692
We attempt to elucidate whether there might be a causal connection between the socioeconomic status (SES) of the rearing environment and obesity in the offspring using data from two large-scale adoption studies: (1) The Copenhagen Adoption Study of Obesity (CASO), and (2) The Survey of Holt Adoptees and Their Families (HOLT). In CASO, the SES of both biological and adoptive parents was known, but all children were adopted. In HOLT, only the SES of the rearing parents was known, but the children could be either biological or adopted. After controlling for relevant covariates (e.g., adoptee age at measurement, adoptee age at transfer, adoptee sex) the raw (unstandardized) regression coefficients for adoptive and biological paternal SES on adoptee body mass index (BMI: kg/m2) in CASO were -.22 and -.23, respectively, both statistically significant (p = 0.01). Controlling for parental BMI (both adoptive and biological) reduced the coefficient for biological paternal SES by 44% (p = .034) and the coefficient for adoptive paternal SES by 1%. For HOLT, the regression coefficients for rearing parent SES were -.42 and -.25 for biological and adoptive children, respectively. Controlling for the average BMI of the rearing father and mother (i.e., mid-parental BMI) reduced the SES coefficient by 47% in their biological offspring (p≤.0001), and by 12% in their adoptive offspring (p = .09). Thus, despite the differing structures of the two adoption studies, both suggest that shared genetic diathesis and direct environmental transmission contribute about equally to the association between rearing SES and offspring BMI. 相似文献
12.
Buda Jakub Poniecka Ewa A. Rozwalak Piotr Ambrosini Roberto Bagshaw Elizabeth A. Franzetti Andrea Klimaszyk Piotr Nawrot Adam Pietryka Mirosława Richter Dorota Zawierucha Krzysztof 《Ecosystems》2022,25(7):1510-1521
Ecosystems - Cryoconite is a sediment occurring on glacier surfaces worldwide which reduces ice albedo and concentrates glacier surface meltwater into small reservoirs called cryoconite holes. It... 相似文献
13.
Joachim R. Karlsen Niels Borregaard Jack B. Cowland 《The Journal of biological chemistry》2010,285(19):14088-14100
14.
15.
16.
Daniel V. Bax Ursula R. Rodgers Marcela M. M. Bilek Anthony S. Weiss 《The Journal of biological chemistry》2009,284(42):28616-28623
Elastin fibers are predominantly composed of the secreted monomer tropoelastin. This protein assembly confers elasticity to all vertebrate elastic tissues including arteries, lung, skin, vocal folds, and elastic cartilage. In this study we examined the mechanism of cell interactions with recombinant human tropoelastin. Cell adhesion to human tropoelastin was divalent cation-dependent, and the inhibitory anti-integrin αVβ3 antibody LM609 inhibited cell spreading on tropoelastin, identifying integrin αVβ3 as the major fibroblast cell surface receptor for human tropoelastin. Cell adhesion was unaffected by lactose and heparin sulfate, indicating that the elastin-binding protein and cell surface glycosaminoglycans are not involved. The C-terminal GRKRK motif of tropoelastin can bind to cells in a divalent cation-dependent manner, identifying this as an integrin binding motif required for cell adhesion.Cellular interactions with extracellular matrix proteins are vital for cell survival and tissue maintenance. The attachment of cells to their extracellular matrix (ECM)3 is often mediated by cell surface integrins. As such, integrins are involved in many biological functions such cell migration and proliferation, tissue organization, wound repair, development, and host immune responses. In addition to roles under normal physiological conditions, integrins are involved in the pathogenesis of diseases such as arthritis, cardiovascular disease, inflammation, microbial and parasitic infection, and cancer. Integrins are a family of heterodimeric transmembrane receptors containing one α subunit and one β subunit (1). Often integrins bind to ECM proteins via short RGD motifs within the matrix protein (2). In addition to an RGD motif, fibronectin also contains an upstream PHSRN synergy sequence, which is required for full integrin binding activity (3).Elastin confers elasticity on all vertebrate elastic tissues including arteries, lung, skin, vocal fold, and elastic cartilage (4). Elastin comprises ∼90% of the elastic fiber and is intermingled with fibrillin-rich microfibrils (5). There is a single human tropoelastin gene in which alternative splicing can result in the loss of domains 22, 23, 24, 26A, 30, 32, and 33 (4). Elastin is made from the secreted monomer tropoelastin, which is a 60–72-kDa protein containing repeating hydrophobic and cross-linking domains. Hydrophobic domains are rich in GVGVP, GGVP, and GVGVAP repeats, which can associate by coacervation (6). This association results in structural changes and increased α-helical content (7). The cross-linking domains are lysine-rich. Occasionally these residues are modified to allysine through the activity of members of the family of lysyl oxidase (LOX) and four LOX-like enzymes. During coacervation the allysine and other allysines or specific lysine side chains come into close proximity, allowing nonenzymatic condensation reactions to occur, forming desmosine or isodesmosine cross-links (4). This process gives a highly stable cross-linked elastin matrix which has a half-life of ∼70 years. Members of the serine, aspartate, cysteine, and matrix metalloproteinase families of proteases can degrade elastin (8). The resulting elastin peptides have effects on ECM synthesis and cell attachment, migration, and proliferation (9).The consequences of mutated or hemizygous elastin in the hereditary, connective tissue disorders cutis laxa, supravalvular aortic stenosis, and Williams-Beuren syndrome highlight the elastins essential role in elastic tissue function (10). Elastin is the major protein in large elastic blood vessels such as the aorta, where it is likely to inhibit the proliferation of vascular smooth muscle cells and so preventing vessel occlusion (11), which is a major cause of death in developed countries. Previous studies have shown that human and bovine tropoelastin can bind directly to a variety of cell types directly through a number of cell surface receptors (12–14) and also bind indirectly to cells through ECM proteins such as fibulin-5 (15, 16).A mechanism by which elastin binds to cells is via the 67-kDa elastin-binding protein (EBP), which is a peripheral membrane splice variant of β-galactosidase. The EBP forms a complex with the integral membrane proteins carboxypeptidase A and sialidase, forming a transmembrane elastin receptor (12). The binding site for the EBP has been mapped to the consensus sequence XGXXPG within elastin and in particular to VGVAPG within exon 24 (17). The binding of elastin to the EBP results in cell morphological changes (18, 19), chemotaxis (20), decreased cell proliferation (21), and angiogenesis (22). Knockouts of β-galactosidase, which remove the EBP, display correctly deposited elastin (27). Additionally tropoelastin actively promotes cell adhesion, whereas VGVAPG does not. These observations imply that receptors other than EBP can interact with elastin.Other studies have proposed a second mechanism involving the necessity of cell surface heparan and chondroitin sulfate-containing glycosaminoglycans for bovine chondrocyte interaction with bovine tropoelastin (14). Peptide binding analysis implicated the last 17 amino acids at the C terminus of bovine tropoelastin in this cell adhesive activity, with higher binding requiring the C-terminal 25 amino acids. This region is of interest, as in humans a mutation of Gly-773 to Asp in exon 33 results in blocked elastin network assembly and modulates cell binding to a peptide corresponding to exons 33 and 36 of human tropoelastin (28). Indeed Broekelmann et al. (14) have shown that synthetic peptides containing the C-terminal 29 amino acids of bovine tropoelastin possess cell adhesive activity; however, when the G773D mutation was incorporated into the peptide, it prevented cell adhesion to that peptide.Although tropoelastin does not contain an RGD motif, other data identified a third mechanism involving direct interaction between integrin αvβ3 and human tropoelastin (13, 29). This interaction was also localized to the C-terminal domains of tropoelastin.More recent data has shown that human umbilical vein endothelial cells can adhere to recombinant fragments of human tropoelastin (30, 31). In contrast to other data, regions encoded by the N-terminal exons (1–18), the central exons (18–27), and the C-terminal exons (18–36) all supported human umbilical vein endothelial cell attachment.Although a previous study has shown a direct interaction between purified integrin αvβ3 and human tropoelastin (13), the integrin dependence of cell adhesion to tropoelastin had not been demonstrated. Here we demonstrate that human dermal fibroblasts adhere to recombinant human tropoelastin and that inhibitors of the elastin-binding protein and cell surface heparan sulfate have no effect on cell adhesion. In contrast, cell adhesion was dependent upon the presence of divalent cations, indicating integrin dependence. Inhibitory monoclonal antibodies identified integrin αVβ3 as the major receptor necessary for fibroblast adherence and spreading onto human tropoelastin. The binding motif for integrin-mediated cell adhesion is unknown; therefore, through the use of synthetic peptides, the adhesive activity was localized to the extreme C-terminal GRKRK motif of tropoelastin. This data present a novel mechanism for cell adhesion to human tropoelastin and identify a novel integrin binding motif within tropoelastin. 相似文献
17.
18.
19.
Jos L. Tella Manuela G. Forfero Jos A. Donzar Fernando Hiraldo 《Ethology : formerly Zeitschrift fur Tierpsychologie》1997,103(1):72-81
Some lesser kestrel females (Falco naumanni) show male plumage traits, i.e. grey rumps and tails. This phenomenon has seldom been analyzed in birds, and two hypotheses have been suggested to explain it. The first proposes that, when sexual selection acts favouring the expression of a trait in males, females could show the analogous character by genetic correlation (indirect sexual selection). Alternatively, the expression of these traits in females could be favoured by intra-sexual competition or even by male mate choice selecting ornamented females (direct sexual selection). We have tested if females with male traits are favoured by direct sexual selection, through a 3-yr observational study of 239 female lesser kestrels. Our results cannot support the predictions, as females with grey plumages do not achieve access to better breeding opportunities or fitness benefits. These traits do not seem to be honest signals of phenotypic quality, since physical condition and survival did not differ between females which showed male traits and those which did not. The expression of male traits in these females increased with their ages, but showing a high individual variability. Finally, since the genetic correlation hypothesis is unlikely in this species because all males have grey rumps and tails, we propose a new age-related hormonal explanation. 相似文献
20.
Hardeep Kaur Chitranshu Kumar Christophe Junot Michel B. Toledano Anand K. Bachhawat 《The Journal of biological chemistry》2009,284(21):14493-14502
GSH metabolism in yeast is carried out by the γ-glutamyl cycle as
well as by the DUG complex. One of the last steps in the
γ-glutamyl cycle is the cleavage of Cys-Gly by a peptidase to the
constitutent amino acids. Saccharomyces cerevisiae extracts carry
Cys-Gly dipeptidase activity, but the corresponding gene has not yet been
identified. We describe the isolation and characterization of a novel Cys-Gly
dipeptidase, encoded by the DUG1 gene. Dug1p had previously been
identified as part of the Dug1p-Dug2p-Dug3p complex that operates as an
alternate GSH degradation pathway and has also been suggested to function as a
possible di- or tripeptidase based on genetic studies. We show here that Dug1p
is a homodimer that can also function in a Dug2-Dug3-independent manner as a
dipeptidase with high specificity for Cys-Gly and no activity toward tri- or
tetrapeptides in vitro. This activity requires zinc or manganese
ions. Yeast cells lacking Dug1p (dug1Δ) accumulate Cys-Gly.
Unlike all other Cys-Gly peptidases, which are members of the metallopeptidase
M17, M19, or M1 families, Dug1p is the first to belong to the M20A family. We
also show that the Dug1p Schizosaccharomyces pombe orthologue
functions as the exclusive Cys-Gly peptidase in this organism. The human
orthologue CNDP2 also displays Cys-Gly peptidase activity, as seen by
complementation of the dug1Δ mutant and by biochemical
characterization, which revealed a high substrate specificity and affinity for
Cys-Gly. The results indicate that the Dug1p family represents a novel class
of Cys-Gly dipeptidases.GSH is a thiol-containing tripeptide
(l-γ-glutamyl-l-cysteinyl-glycine) present in
almost all eukaryotes (barring a few protozoa) and in a few prokaryotes
(1). In the cell, glutathione
exists in reduced (GSH) and oxidized (GSSG) forms. Its abundance (in the
millimolar range), a relatively low redox potential (-240 mV), and a high
stability conferred by the unusual peptidase-resistant γ-glutamyl bond
are three of the properties endowing GSH with the attribute of an important
cellular redox buffer. GSH also contributes to the scavenging of free radicals
and peroxides, the chelation of heavy metals, such as cadmium, the
detoxification of xenobiotics, the transport of amino acids, and the
regulation of enzyme activities through glutathionylation and serves as a
source of sulfur and nitrogen under starvation conditions
(2,
3). GSH metabolism is carried
out by the γ-glutamyl cycle, which coordinates its biosynthesis,
transport, and degradation. The six-step cycle is schematically depicted in
Fig. 1
(2).Open in a separate windowFIGURE 1.γ-Glutamyl cycle of glutathione metabolism.
γ-Glutamylcysteine synthetase and GSH synthetase carry out the first two
steps in glutathione biosynthesis. γ-glutamyltranspeptidase,
γ-glutamylcyclotransferase, 5-oxoprolinase, and Cys-Gly dipeptidase are
involved in glutathione catabolism. Activities responsible for
γ-glutamylcyclotransferase and 5-oxoprolinase have not been detected in
S. cerevisiae.In Saccharomyces cerevisiae, γ-glutamyl cyclotransferase and
5-oxoprolinase activities have not been detected, which has led to the
suggestion of the presence of an incomplete, truncated form of the
γ-glutamyl cycle (4) made
of γ-glutamyl transpeptidase
(γGT)4 and
Cys-Gly dipeptidase and only serving a GSH catabolic function. Although
γGT and Cys-Gly dipeptidase activities were detected in S.
cerevisiae cell extracts, only the γGT gene (ECM38) has
been identified so far. Cys-Gly dipeptidase activity has been identified in
humans (5,
6), rats
(7–10),
pigs (11,
12), Escherichia coli
(13,
14), and other organisms
(15,
16), and most of them belong
to the M17 or the M1 and M19 metallopeptidases gene families
(17).S. cerevisiae has an alternative γGT-independent GSH
degradation pathway (18) made
of the Dug1p, Dug2p, and Dug3p proteins that function together as a complex.
Dug1p also seem to carry nonspecific di- and tripeptidase activity, based on
genetic studies (19).We show here that Dug1p is a highly specific Cys-Gly dipeptidase, as is its
Schizosaccharomyces pombe homologue. We also show that the mammalian
orthologue of DUG1, CNDP2, can complement the defective utilization
of Cys-Gly as sulfur source of an S. cerevisiae strain lacking
DUG1 (dug1Δ). Moreover, CNDP2 has Cys-Gly dipeptidase
activity in vitro, with a strong preference for Cys-Gly over all
other dipeptides tested. CNDP2 and its homologue CNDP1 are members of the
metallopeptidases M20A family and have been known to carry carnosine
(β-alanyl-histidine) and carnosine-like (homocarnosine and anserine)
peptidase activity (20,
21). This study thus reveals
that the metallopeptidase M20A family represents a novel Cys-Gly peptidase
family, since only members of the M19, M1, and M17 family were known to carry
this function. 相似文献