共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims
Sexual reproduction is one of the most important moments in a life cycle, determining the genetic composition of individual offspring. Controlled pollination experiments often show high variation in the mating system at the individual level, suggesting a persistence of individual variation in natural populations. Individual variation in mating patterns may have significant adaptive implications for a population and for the entire species. Nevertheless, field data rarely address individual differences in mating patterns, focusing rather on averages. This study aimed to quantify individual variation in the different components of mating patterns.Methods
Microsatellite data were used from 421 adult trees and 1911 seeds, structured in 72 half-sib families collected in a single mixed stand of Quercus robur and Q. petraea in northern Poland. Using a Bayesian approach, mating patterns were investigated, taking into account pollen dispersal, male fecundity, possible hybridization and heterogeneity in immigrant pollen pools.Key Results
Pollen dispersal followed a heavy-tailed distribution (283 m on average). In spite of high pollen mobility, immigrant pollen pools showed strong genetic structuring among mothers. At the individual level, immigrant pollen pools showed highly variable divergence rates, revealing that sources of immigrant pollen can vary greatly among particular trees. Within the stand, the distribution of male fecundity appeared highly skewed, with a small number of dominant males, resulting in a ratio of census to effective density of pollen donors of 5·3. Male fecundity was not correlated with tree diameter but showed strong cline-like spatial variation. This pattern can be attributed to environmental variation. Quercus petraea revealed a greater preference (74 %) towards intraspecific mating than Q. robur (36 %), although mating preferences varied among trees.Conclusions
Mating patterns can reveal great variation among individuals, even within a single even-age stand. The results show that trees can mate assortatively, with little respect for spatial proximity. Such selective mating may be a result of variable combining compatibility among trees due to genetic and/or environmental factors. 相似文献2.
The present study aimed to dissect tree architectural plasticity into genetic, ontogenetic and environmental effects over the first 4 years of growth of an apple F1 progeny by means of quantitative traits loci (QTL) mapping. Both growth and branching processes were phenotyped on the consecutive annual shoots of different axes within a tree. For each studied trait, predicted values (best linear unbiased predictors, BLUPs) of the genotypic (G) effect or its interaction with tree age (G×A) and climatic year (G×Y) were extracted from mixed linear models of repeated data. These BLUPs, which are independent from autocorrelations between repeated measurements, were used for QTL mapping. QTL detection power was improved by this two-step approach. For each architectural process, numerous QTLs were detected and some particularly interesting co-localised in common genomic regions, for internode lengthening, top diameter, and number and percentage of axillary shoots. When several QTLs were detected for a given trait, global models were estimated, which explained a maximum of 40% of the total variance for both internode length and top diameter and 28% for branching. QTLs detected for BLUPs of G×Y effects were interpreted as resulting from the interaction between genetic maximal potential of growth and climatic factors, while those for G×A effects were interpreted in relation to tree ontogeny. Most of the latter ones were found to be concomitant with key development stages during which the trait average started to decrease, but with different magnitudes depending on genotype. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
3.
Background and Aims
Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analysis of its canopy architectural development and functions is valuable for better understanding its behaviour and roles in fragile ecosystems. However, due to the intrinsic complexity and variability of trees, the parametric identification of such models is currently a major obstacle to their evaluation and their validation with respect to real data. The aim of this paper was to present the mathematical framework of a stochastic functional–structural model (GL2) and its parameterization for Mongolian Scots pines, taking into account inter-plant variability in terms of topological development and biomass partitioning.Methods
In GL2, plant organogenesis is determined by the realization of random variables representing the behaviour of axillary or apical buds. The associated probabilities are calibrated for Mongolian Scots pines using experimental data including means and variances of the numbers of organs per plant in each order-based class. The functional part of the model relies on the principles of source–sink regulation and is parameterized by direct observations of living trees and the inversion method using measured data for organ mass and dimensions.Key Results
The final calibration accuracy satisfies both organogenetic and morphogenetic processes. Our hypothesis for the number of organs following a binomial distribution is found to be consistent with the real data. Based on the calibrated parameters, stochastic simulations of the growth of Mongolian Scots pines in plantations are generated by the Monte Carlo method, allowing analysis of the inter-individual variability of the number of organs and biomass partitioning. Three-dimensional (3D) architectures of young Mongolian Scots pines were simulated for 4-, 6- and 8-year-old trees.Conclusions
This work provides a new method for characterizing tree structures and biomass allocation that can be used to build a 3D virtual Mongolian Scots pine forest. The work paves the way for bridging the gap between a single-plant model and a stand model. 相似文献4.
Background and Aims
The ability to simulate plant competition accurately is essential for plant functional type (PFT)-based models used in climate-change studies, yet gaps and uncertainties remain in our understanding of the details of the competition mechanisms and in ecosystem responses at a landscape level. This study examines secondary succession in a temperate deciduous forest in eastern China with the aim of determining if competition between tree types can be explained by differences in leaf ecophysiological traits and growth allometry, and whether ecophysiological traits and habitat spatial configurations among PFTs differentiate their responses to climate change.Methods
A temperate deciduous broadleaved forest in eastern China was studied, containing two major vegetation types dominated by Quercus liaotungensis (OAK) and by birch/poplar (Betula platyphylla and Populus davidiana; BIP), respectively. The Terrestrial Ecosystem Simulator (TESim) suite of models was used to examine carbon and water dynamics using parameters measured at the site, and the model was evaluated against long-term data collected at the site.Key Results
Simulations indicated that a higher assimilation rate for the BIP vegetation than OAK led to the former''s dominance during early successional stages with relatively low competition. In middle/late succession with intensive competition for below-ground resources, BIP, with its lower drought tolerance/resistance and smaller allocation to leaves/roots, gave way to OAK. At landscape scale, predictions with increased temperature extrapolated from existing weather records resulted in increased average net primary productivity (NPP; +19 %), heterotrophic respiration (+23 %) and net ecosystem carbon balance (+17 %). The BIP vegetation in higher and cooler habitats showed 14 % greater sensitivity to increased temperature than the OAK at lower and warmer locations.Conclusions
Drought tolerance/resistance and morphology-related allocation strategy (i.e. more allocation to leaves/roots) played key roles in the competition between the vegetation types. The overall site-average impacts of increased temperature on NPP and carbon stored in plants were found to be positive, despite negative effects of increased respiration and soil water stress, with such impacts being more significant for BIP located in higher and cooler habitats. 相似文献5.
Treatment of 3-year-old Scots, white, and Austrian pine seedlings with copper sulfate or lead acetate significantly affected energy homeostasis and oleoresin production in the seedlings but did not induce wilting of the seedlings. Inoculation of copper sulfate-treated or lead acetate-treated white, Scots, and Austrian pine seedlings with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1, caused a significant increase in oleoresin production, stressed energy homeostasis, and induced rapid wilting of the seedlings. Scots pine lost tolerance and Austrian pine lost resistance to VPSt-1 after the seedlings were treated with either copper sulfate or lead acetate. These results suggest that environmental pollution may significantly affect susceptibility of pines to B. xylophilus and may have a role in establishment of this nematode in uninfested areas. 相似文献
6.
Total genomic DNA from Bursaphelenchus xylophilus pathotypes MPSy-1 and VPSt-1 and from B. mucronatus was digested with restriction endonucleases. DNA fragments were electrophoretically separated, Southern blotted to nitrocellulose, and hybridized to genomic DNA from one of the isolates. The resulting hybridization patterns indicate genomic differences in repetitive DNA sequences among these populations. Greatest differences were seen between B. xylophilus and B. mucronatus, but genomic differences were also apparent between B. xylophilus pathotypes MPSy-1 and VPSt-1 and between a population from P. nigra in New Jersey and a population of a mucronate form from Abies balsamea in Quebec, Canada. 相似文献
7.
Dongliang Cheng Quanlin Zhong Karl J. Niklas Yuzhu Ma Yusheng Yang Jianhua Zhang 《Annals of botany》2015,115(2):303-313
Background and Aims Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs.Methods In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log–log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made.Key Results The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants.Conclusions The results support the AP theory’s prediction that MA scales nearly one-to-one with MR (i.e. MA ∝ MR≈1·0) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents of the MA vs. MR relationship. This feature of the results suggests that plant size is the primary driver of the MA vs. MR biomass allocation pattern for understorey plants in sub-tropical forests. 相似文献
8.
Maunoury F Berveiller D Lelarge C Pontailler JY Vanbostal L Damesin C 《Oecologia》2007,151(2):268-279
The stable C isotope composition (δ13C) of CO2 respired by trunks was examined in a mature temperate deciduous oak forest (Quercus petraea). Month-to-month, day-to-day and diurnal, measurements were made to determine the range of variations at different temporal
scales. Trunk growth and respiration rates were assessed. Phloem tissue was sampled and was analysed for total organic matter
and soluble sugar 13C composition. The CO2 respired by trunk was always enriched in 13C relative to the total organic matter, sometimes by as much as 5‰. The δ13C of respired CO2 exhibited a large seasonal variation (3.3‰), with a relative maximum at the beginning of the growth period. The lowest values
occurred in summer when the respiration rates were maximal. After the cessation of radial trunk growth, the respired CO2 δ13C values showed a progressive increase, which was linked to a parallel increase in soluble sugar content in the phloem tissue
(R = 0.95; P < 0.01). At the same time, the respiration rates declined. This limited use of the substrate pool might allow the discrimination
during respiration to be more strongly expressed. The late-season increase in CO2 δ13C might also be linked to a shift from recently assimilated C to reserves. At the seasonal scale, CO2 δ13C was negatively correlated with air temperature (R = −0.80; P < 0.01). The diurnal variation sometimes reached 3‰, but the range and the pattern depended on the period within the growing
season. Contrary to expectations, diurnal variations were maximal in winter and spring when the leaves were missing or not
totally functional. By contrast to the seasonal scale, these diurnal variations were not related to air temperature or sugar
content. Our study shows that seasonal and diurnal variations of respired 13C exhibited a similar large range but were probably explained by different mechanisms. 相似文献
9.
Genotypically different host specific pathotypes of Bursaphelenchus xylophilus have been identified. These pathotypes elicit different responses in pines depending on susceptibility, tolerance, or resistance. Continued passage of some of these pathotypes on fungal cultures leads to conversion to nonparasitic populations. These populations metabolize carbon substrates to ethanol by an anaerobic pathway, while operating some level of a phosphoenolpyruvate (PEP)-succinate pathway to excrete succinate-lactate and malate. On the other hand, parasitic populations metabolize glucose to lactate-succinate, mainly by a PEP-succinate pathway, and maintain redox balance through glycerol production. Ethanol and malate are not excreted by parasitic populations. 相似文献
10.
Background and Aims
The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.Methods
Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.Key Results
The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.Conclusions
Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions. 相似文献11.
Stylet ultrastructure of five Xiphinema, four Longidorus, and three Californidorus species was compared by scanning electron microscopy. Morphological differences were seen in the odontophores and odontostyle bases between the genera and some of the species. All Xiphinema studied had well-developed odontophore flanges; the Longidorus species lacked flanges, except for weakly developed ones in L. diadecturus; and none of the Californidorus had flanges. Three sinuses were present in the odontophores of all species. The sinuses varied in length depending upon species. In Xiphinema and Californidorus the odontostyle bases had distinct overlapping collars, but in Longidorus the collars were absent except for L. diadecturus. The odontostyle-odontophore junction from a lateral view appeared as a slanted transverse line in all the species, but in a dorsal view of Xiphinema and Californidorus it was V-shaped. Dorsal longitudinal seams of the odontostyle and odontophore were observed in all the species. The dorsally located odontostyle aperture was ca. 1 μm from the anterior end in all species, except in one Longidorus sp. it was ca. 4 μm from the end. 相似文献
12.
Dayana E. Salas-Leiva Alan W. Meerow Michael Calonje M. Patrick Griffith Javier Francisco-Ortega Kyoko Nakamura Dennis W. Stevenson Carl E. Lewis Sandra Namoff 《Annals of botany》2013,112(7):1263-1278
Background and aims
Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera.Methods
DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted.Key Results
Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia–Lepidozamia–Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia.Conclusions
A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae. 相似文献13.
Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar 总被引:1,自引:0,他引:1
Têtè Sévérien Barigah Olivia Charrier Marie Douris Marc Bonhomme Stéphane Herbette Thierry Améglio Régis Fichot Frank Brignolas Hervé Cochard 《Annals of botany》2013,112(7):1431-1437
Background and Aims
Extreme water stress episodes induce tree mortality, but the physiological mechanisms causing tree death are still poorly understood. This study tests the hypothesis that a potted tree''s ability to survive extreme monotonic water stress is determined by the cavitation resistance of its xylem tissue.Methods
Two species were selected with contrasting cavitation resistance (beech and poplar), and potted juvenile trees were exposed to a range of water stresses, causing up to 100 % plant death.Key Results
The lethal dose of water stress, defined as the xylem pressure inducing 50 % mortality, differed sharply across species (1·75 and 4·5 MPa in poplar and beech, respectively). However, the relationships between tree mortality and the degree of cavitation in the stems were similar, with mortality occurring suddenly when >90 % cavitation had occurred.Conclusions
Overall, the results suggest that cavitation resistance is a causal factor of tree mortality under extreme drought conditions. 相似文献14.
Background and Aims There is a growing concern about how forests will respond to increased herbivory associated with climate change. Carbon (C) and nitrogen (N) limitation are hypothesized to cause decreasing growth after defoliation, and eventually mortality. This study examines the effects of a natural and massive defoliation by an insect on mature trees’ C and N storage, which have rarely been studied together, particularly in winter-deciduous species.Methods Survival, growth rate, carbon [C, as non-structural carbohydrate (NSC) concentration] and nitrogen (N) storage, defences (tannins and total polyphenols), and re-foliation traits were examined in naturally defoliated and non-defoliated adult trees of the winter-deciduous temperate species Nothofagus pumilio 1 and 2 years after a massive and complete defoliation caused by the caterpillar of Ormiscodes amphimone (Saturniidae) during summer 2009 in Patagonia.Key Results Defoliated trees did not die but grew significantly less than non-defoliated trees for at least 2 years after defoliation. One year after defoliation, defoliated trees had similar NSC and N concentrations in woody tissues, higher polyphenol concentrations and lower re-foliation than non-defoliated trees. In the second year, however, NSC concentrations in branches were significantly higher in defoliated trees while differences in polyphenols and re-foliation disappeared and decreased, respectively.Conclusions The significant reduction in growth following defoliation was not caused by insufficient C or N availability, as frequently assumed; instead, it was probably due to growth limitations due to factors other than C or N, or to preventative C allocation to storage. This study shows an integrative approach to evaluating plant growth limitations in response to disturbance, by examining major resources other than C (e.g. N), and other C sinks besides storage and growth (e.g. defences and re-foliation). 相似文献
15.
Zhun Mao Laurent Saint-André Franck Bourrier Alexia Stokes Thomas Cordonnier 《Annals of botany》2015,116(2):261-277
Background and Aims In mountain ecosystems, predicting root density in three dimensions (3-D) is highly challenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic model, named ChaMRoots, that predicts root interception density (RID, number of roots m–2). ChaMRoots hypothesizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape.Methods The model comprises three sub-models for predicting: (1) the spatial heterogeneity – RID of the finest roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a given point; (2) the diameter spectrum – the distribution of RID as a function of root diameter up to 50 mm thick; and (3) the vertical profile – the distribution of RID as a function of soil depth. The RID data used for fitting in the model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree density and species composition.Key Results In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the fit to the observed data.Conclusions The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual. Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a good compromise between the complexity of the case study area and that of the global model structure. ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems. 相似文献
16.
Background and Aims
In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.Methods
Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.Key Results
In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence.Conclusions
The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. 相似文献17.
Field-collected adults of the southern pine sawyer, Monochamus titillator (F.) (Coleoptera: Cerambycidae), naturally infested with fourth-stage juveniles (dauerlarvae) of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, 1934) Nickle, 1970, were maturation fed on excised shoots of typical slash pine, Pinus elliottii Engelm. var elliottii, for 21 days. During August 1981, a male and female adult beetle were held in a sleeve cage placed on the terminal of a side branch of each of seven replicate, healthy 10-year-old slash pine trees. All seven branch terminals showed evidence of beetle feeding on the bark after 1 week, and pinewood nematodes were present in wood samples taken near these feeding sites. Four of the seven trees showed wilt symptoms in 4-6 weeks and died about 9 weeks after beetle feeding. Pinewood nematodes were recovered from the roots and trunks of the dead trees. Each of seven replicate slash pine log bolts was enclosed in a jar with a pair of the same beetles used in the sleeve cages. After 1 week, wood underlying beetle oviposition sites in the bark of all replicate log bolts was infested with the pinewood nematode. 相似文献
18.
Populations of three isolates of Bursaphelenchus xylophilus, the pinewood nematode, and one of B. mucronatus were treated with three cryoprotectants at -70 C for 24 hours followed by deep freezing at -180 C in liquid nitrogen for different periods of time. A solution of 15% glycerol, 35% buffer S, and 50% M9, or 1% aqueous solution of dimethylsulfoxide (DMSO), or a mixture of 60% M9 and 40% S buffer were used as cryoprotectants. A significantly larger number of juveniles than adults survived deep freezing. Significantly more nematodes were motile after cryopreservation in the 15% glycerol-S-M9 soludon than in the M9-S buffer solution or the DMSO aqueous solution. When cryopreserved nematodes that had been treated with glycerol solution were plated onto Botrytis cinerea, they reproduced rapidly over several generations. Cryopreserved nematodes were as pathogenic as untreated nematodes to Scots pines. 相似文献
19.
A new species of the genus Megoura, M. lathyricola
sp. n., was collected from Lathyrus japonicus subsp. japonicus (Leguminosae) in seashore areas of northern and southern Japan. This species is described and illustrated, and a revised key to the identification of the world species of Megoura is presented. 相似文献
20.
Simon Scheuring 《生物化学与生物物理学报:生物膜》2005,1712(2):109-127
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function.Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 Å lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria. 相似文献