首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Dysbindin, a cytoplasmic protein long known to function in the biogenesis of specialized lysosome-related organelles (LROs), has been reported to reduce surface expression of D2 dopamine receptors in neurons. Dysbindin is broadly expressed, and dopamine receptors are members of the large family of G protein-coupled receptors (GPCRs) that function in diverse cell types. Thus we asked if dysbindin regulates receptor number in non-neural cells, and further investigated the cellular basis of this regulation.

Methodology/Principal Findings

We used RNA interference to deplete endogenous dysbindin in HEK293 and HeLa cells, then used immunochemical and biochemical methods to assess expression and endocytic trafficking of epitope-tagged GPCRs. Dysbindin knockdown up-regulated surface expression of D2 receptors compared to D1 receptors, as reported previously in neurons. This regulation was not mediated by a change in D2 receptor endocytosis. Instead, dysbindin knockdown specifically reduced the subsequent trafficking of internalized D2 receptors to lysosomes. This distinct post-endocytic sorting function explained the minimal effect of dysbindin depletion on D1 receptors, which recycle efficiently and traverse the lysosomal pathway to only a small degree. Moreover, dysbindin regulated the delta opioid receptor, a more distantly related GPCR that is also sorted to lysosomes after endocytosis. Dysbindin was not required for lysosomal trafficking of all signaling receptors, however, as its depletion did not detectably affect down-regulation of the EGF receptor tyrosine kinase. Dysbindin co-immunoprecipitated with GASP-1 (or GPRASP-1), a cytoplasmic protein shown previously to modulate lysosomal trafficking of D2 dopamine and delta opioid receptors by direct interaction, and with HRS that is a core component of the conserved ESCRT machinery mediating lysosome biogenesis and sorting.

Conclusions/Significance

These results identify a distinct, and potentially widespread function of dysbindin in promoting the sorting of specific GPCRs to lysosomes after endocytosis.  相似文献   

2.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.  相似文献   

3.
G蛋白偶联受体失敏的分子机制   总被引:3,自引:0,他引:3  
G蛋白偶联受体(GPCRs)受到激动剂持续刺激对易发生失敏。受体内化是GPCRs失敏重要分子机制。GPCRs在G蛋白产受体激酶(GRKs)、第二信使调节激酶等作用下发生磷酸化,磷酸化的GPCRs与抑制蛋白(arrestins)结合后导致受体与G蛋白失偶联,并通过胞吞由细胞膜表面向膜内转移,从而因GPCRs的内化而表现为失敏。  相似文献   

4.
G protein-coupled receptors (GPCRs) are allosteric proteins, because their signal transduction relies on interactions between topographically distinct, yet conformationally linked, domains. Much of the focus on GPCR allostery in the new millennium, however, has been on modes of targeting GPCR allosteric sites with chemical probes due to the potential for novel therapeutics. It is now apparent that some GPCRs possess more than one targetable allosteric site, in addition to a growing list of putative endogenous modulators. Advances in structural biology are also shedding new insights into mechanisms of allostery, although the complexities of candidate allosteric drugs necessitate rigorous biological characterization.  相似文献   

5.
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.  相似文献   

6.
Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth.  相似文献   

7.
生物信息学的飞速发展为孤儿G蛋白偶联受体(orphan G protein—coupled receptors,oGPCRs)配基的筛选提供了重要的信息资源。利用生物信息学数据库和工具对oGPCRs的核酸和蛋白质序列进行运算、分析、注释和预测,获得足够的生物信息,辅助实验研究,以尽可能快速、准确地筛选出oGPCRs的特异性配基。本介绍有关生物信息学在oGPCRs配基筛选研究中的应用。  相似文献   

8.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是一类重要的细胞膜表面跨膜蛋白受体超家族,具有7个跨膜螺旋结构。GPCRs的细胞内信号由G蛋白介导,可将激素、神经递质、药物、趋化因子等多种物理和化学的细胞外刺激穿过细胞膜转导到细胞内不同的效应分子,激活相应的信号级联系统进而影响恶性肿瘤的生长迁移过程。虽然目前药物市场上有很多治疗癌症的小分子药物属于G蛋白受体相关药物,但所作用的靶点集中于少数特定G蛋白偶联受体。因此,新的具有成药性的G蛋白偶联受体的开发具有很大的研究价值和市场潜力。本文主要以在癌症发生、发展中起重要作用的溶血磷脂酸(LPA),G蛋白偶联受体30(GPR30)、内皮素A受体(ETAR)等不同G蛋白偶联受体为分类依据,综述其与相关的信号通路在癌症进程中的作用,并对相应的小分子药物的临床应用和研究进展进行展望。  相似文献   

9.
We have addressed the mechanisms governing the activation and trafficking of G protein-coupled receptors (GPCRs) by analyzing constitutively active mating pheromone receptors (Ste2p and Ste3p) of the yeast Saccharomyces cerevisiae. Substitution of the highly conserved proline residue in transmembrane segment VI of these receptors causes constitutive signaling. This proline residue may facilitate folding of GPCRs into native, inactive conformations, and/or mediate agonist-induced structural changes leading to G protein activation. Constitutive signaling by mutant receptors is suppressed upon coexpression with wild-type, but not G protein coupling-defective, receptors. Wild-type receptors may therefore sequester a limiting pool of G proteins; this apparent “precoupling” of receptors and G proteins could facilitate signal production at sites where cell surface projections form during mating partner discrimination. Finally, rather than being expressed mainly at the cell surface, constitutively active pheromone receptors accumulate in post-endoplasmic reticulum compartments. This is in contrast to other defective membrane proteins, which apparently are targeted by default to the vacuole. We suggest that the quality-control mechanism that retains receptors in post-endoplasmic reticulum compartments may normally allow wild-type receptors to fold into their native, fully inactive conformations before reaching the cell surface. This may ensure that receptors do not trigger a response in the absence of agonist.  相似文献   

10.
G蛋白偶联受体转激活酪氨酸激酶受体机制   总被引:1,自引:0,他引:1  
蒋明  郭卉  赵菡  周爱云  林昕  许婵娟  刘剑峰 《现代生物医学进展》2011,(Z1):4767-4769,4771,4800
G蛋白偶联受体(G-protien coupled receptors,GPCRs)和酪氨酸激酶受体(receptor tyrosine kinases,RTKs)是体内两类重要的受体家族,介导着绝大多数信号事件。GPCRs能够"绑架"RTKs进行信号转导,即GPCRs能够在没有外加RTKs配体的情况下激活RTKs,这种现象称为转激活。作为转激活的核心过程,GPCR调控RTK磷酸化主要采取RTK配体依赖模式和非RTK配体依赖模式。不同的G蛋白亚型、酪氨酸磷酸激酶、酪氨酸磷酸酶(protein-tyrosine phosphatases,PTPs)以及活性氧自由基(reactiveoxygen species,ROS)均在此过程中具有重要作用。GPCR和RTK还能形成信号复合体(signaling complex)从而实现蛋白质之间的动态相互作用。对转激活的研究为GPCR靶点药物开发提供了新思路。  相似文献   

11.
Toll-like receptors (TLRs) 3, 7, and 9 are innate immune receptors that recognize nucleic acids from pathogens in endosomes and initiate signaling transductions that lead to cytokine production. Activation of TLR9 for signaling requires proteolytic processing within the ectodomain by endosome-associated proteases. Whether TLR3 requires similar proteolytic processing to become competent for signaling remains unclear. Herein we report that human TLR3 is proteolytically processed to form two fragments in endosomes. Unc93b1 is required for processing by transporting TLR3 through the Golgi complex and to the endosomes. Proteolytic cleavage requires the eight-amino acid Loop1 within leucine-rich repeat 12 of the TLR3 ectodomain. Proteolytic cleavage is not required for TLR3 signaling in response to poly(I:C), although processing could modulate the degree of response toward viral double-stranded RNAs, especially in mouse cells. Both the full-length and cleaved fragments of TLR3 can bind poly(I:C) and are present in endosomes. However, although the full-length TLR3 has a half-life in HEK293T cells of 3 h, the cleaved fragments have half-lives in excess of 7 h. Inhibition of TLR3 cleavage by either treatment with cathepsin inhibitor or by a mutation in Loop1 decreased the abundance of TLR3 in endosomes targeted for lysosomal degradation.  相似文献   

12.
The visual photoreceptor rhodopsin is a prototypical class I (rhodopsin-like) G protein-coupled receptor. Photoisomerization of the covalently bound ligand 11-cis-retinal leads to restructuring of the cytosolic face of rhodopsin. The ensuing protonation of Glu-134 in the class-conserved D(E)RY motif at the C-terminal end of transmembrane helix-3 promotes the formation of the G protein-activating state. Using transmembrane segments derived from helix-3 of bovine rhodopsin, we show that lipid protein interactions play a key role in this cytosolic “proton switch.” Infrared and fluorescence spectroscopic pKa determinations reveal that the D(E)RY motif is an autonomous functional module coupling side chain neutralization to conformation and helix positioning as evidenced by side chain to lipid headgroup Foerster resonance energy transfer. The free enthalpies of helix stabilization and hydrophobic burial of the neutral carboxyl shift the side chain pKa into the range typical of Glu-134 in photoactivated rhodopsin. The lipid-mediated coupling mechanism is independent of interhelical contacts allowing its conservation without interference with the diversity of ligand-specific interactions in class I G protein-coupled receptors.G protein-coupled receptors (GPCRs)2 are hepta-helical membrane proteins that couple a large variety of extracellular signals to cell-specific responses via activation of G proteins. In the visual photoreceptor rhodopsin, a prototypical class I GPCR (1, 2), molecular activation processes can be monitored in real time by spectroscopic assays and analyzed in the context of several crystal structures (38). The primary signal for rhodopsin is the 11-cis to all-trans photoisomerization of retinal covalently bound to the apoprotein opsin through a protonated Schiff base to Lys296. Current models converge toward a picture in which “microdomains” act as conformational switches that are coupled to different degrees to the primary activation process. Two activating “proton switches” have been identified (9) as follows: breakage of an intramolecular salt bridge (10) by transfer of the Schiff base proton to its counter ion Glu-113 (11) is followed by movement of helix-6 (H6) (12, 13) in the metarhodopsin IIa (MIIa) to MIIb transition. The MIIb state takes up a proton at Glu-134 (14) in the class-conserved D(E)RY motif at the C-terminal end of helix-3 (H3) leading to the MIIbH+ intermediate (15, 16), which activates transducin (Gt), the G protein of the photoreceptor cell. Glu-134 regulates the pH sensitivity of receptor signaling (17) in membranes as reviewed previously (18), and in complex with Gt the protonated state of the carboxyl group becomes stabilized (19). This charge alteration is linked to the release of an “ionic lock,” originally described for the β2-adrenergic receptor (20), which also in rhodopsin stabilizes the inactive state (16) through interactions between the cytosolic ends of H3 and H6 (21).In the absence of a lipidic bilayer, proton uptake and H6 movement become uncoupled (15). Lipidic composition affects MII formation, rhodopsin structure, and oligomerization (2224) and differs at the rhodopsin membrane interface from the bulk lipidic phase (25). Likewise, MII formation specifically affects lipid structure (26). Although of fundamental importance for GPCR activation, the potential implication of lipid protein interactions in “proton switching” is not clear. A functional role of Glu-134 in lipid interactions has been originally derived from IR spectra where E134Q replacement abolished changes of lipid headgroup vibrations in the MIIGt complex (19). Computational approaches emphasized the “strategic” location of the D(E)RY motif (27), and the Glu-134 carboxyl pKa may critically depend on the lipid protein interface (28). However, the implications for proton switching are not evident, and the theoretical interest is contrasted by the lack of experimental data addressing the effect of the lipidic phase on side chain protonation, secondary structure, and membrane topology of the D(E)RY motif.We have studied the coupling between conformation and protonation in single transmembrane segments derived from H3 of bovine rhodopsin. We have assessed the “modular” function of the D(E)RY motif by determining parameters not evident from the crystal structures, i.e. the pKa of the conserved carboxyl, its linkage to helical structure, and the effect of protonation on side chain to lipid headgroup distance. We show that the D(E)RY motif encodes an autonomous “proton switch” controlling side chain exposure and helix formation in the low dielectric of a lipidic phase. The data ascribe a functional role to lipid protein interactions that couple the chemical potential of protons to an activity-promoting GPCR conformation in a ligand-independent manner.  相似文献   

13.
Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4–5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the “two state” extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.  相似文献   

14.
Caveolin-1 (CAV1) is the defining constituent of caveolae at the plasma membrane of many mammalian cells. For turnover, CAV1 is ubiquitinated and sorted to late endosomes and lysosomes. Sorting of CAV1 requires the AAA+-type ATPase VCP and its cofactor UBXD1. However, it is unclear in which region CAV1 is ubiquitinated and how ubiquitination is linked to sorting of CAV1 by VCP-UBXD1. Here, we show through site-directed mutagenesis that ubiquitination of CAV1 occurs at any of the six lysine residues, 5, 26, 30, 39, 47, and 57, that are clustered in the N-terminal region but not at lysines in the oligomerization, intramembrane, or C-terminal domains. Mutation of Lys-5–57 to arginines prevented binding of the VCP-UBXD1 complex and, importantly, strongly reduced recruitment of VCP-UBXD1 to endocytic compartments. Moreover, the Lys-5–57Arg mutation specifically interfered with trafficking of CAV1 from early to late endosomes. Conversely and consistently, depletion of VCP or UBXD1 led to accumulation of ubiquitinated CAV1, suggesting that VCP acts downstream of ubiquitination and is required for transport of the ubiquitinated form of CAV1 to late endosomes. These results define the N-terminal region of CAV1 as the critical ubiquitin conjugation site and, together with previous data, demonstrate the significance of this ubiquitination for binding to the VCP-UBXD1 complex and for sorting into lysosomes.  相似文献   

15.
Although agonist-dependent endocytosis of G protein-coupled receptors (GPCRs) as a means to modulate receptor signaling has been widely studied, the constitutive endocytosis of GPCRs has received little attention. Here we show that two prototypical class I GPCRs, the β2 adrenergic and M3 muscarinic receptors, enter cells constitutively by clathrin-independent endocytosis and colocalize with markers of this endosomal pathway on recycling tubular endosomes, indicating that these receptors can subsequently recycle back to the plasma membrane (PM). This constitutive endocytosis of these receptors was not blocked by antagonists, indicating that receptor signaling was not required. Interestingly, the G proteins that these receptors couple to, Gαs and Gαq, localized together with their receptors at the plasma membrane and on tubular recycling endosomes. Upon agonist stimulation, Gαs and Gαq remained associated with the PM and these endosomal membranes, whereas β2 and M3 receptors now entered cells via clathrin-dependent endocytosis. Deletion of the third intracellular loop (i3 loop), which is thought to play a role in agonist-dependent endocytosis of the M3 receptor, had no effect on the constitutive internalization of the receptor. Surprisingly, with agonist, the mutated M3 receptor still internalized and accumulated in cells but through clathrin-independent and not clathrin-dependent endocytosis. These findings demonstrate that GPCRs are versatile PM proteins that can utilize different mechanisms of internalization depending upon ligand activation.G protein-coupled receptors (GPCRs)2 belong to a superfamily of seven transmembrane-spanning proteins that respond to a diverse array of sensory and chemical stimuli (14). Activation of GPCRs through the binding of specific agonists induces conformational changes that allow activation of heterotrimeric guanine nucleotide-binding proteins (G proteins) (5, 6). To ensure that the signals are controlled in magnitude and duration, activated GPCRs are rapidly desensitized through phosphorylation carried out by G protein-coupled receptor kinases (GRKs) (7). This facilitates β-arrestin binding and promotes receptor uncoupling from the G protein (8, 9). In addition to its role in GPCRs desensitization, β-arrestins promote the translocation of the receptor to the endocytic machinery involving clathrin and adaptor protein-2 (AP-2), thereby facilitating receptor removal from the plasma membrane (1015). Once internalized, some GPCRs may even continue to signal from endosomes (16).Although GPCR internalization is generally considered to be an agonist-dependent phenomenon, some evidence suggests that GPCRs can be endocytosed even in the absence of agonist, a process known as constitutive internalization (1720). The role of constitutive internalization of GPCRs is not clear. One interesting study on cannabinoid CB1 receptors in neurons has shown that constitutive internalization from the somatodendritic and not axonal membrane is responsible for the overall redistribution of receptors from the somatodentritic to the axonal membrane (17). Another study on the melanocortin MC4 receptor raised the possibility that constitutive endocytosis could be a consequence of the basal activity of the receptor (18).Even less is known about the potential trafficking of the transducer of GPCR signaling, the G protein (21). Generally, the binding of the agonist to the GPCR promotes the exchange of GDP on the Gα protein for GTP and allows the dissociation of the trimeric G protein into Gα-GTP and Gβγ dimer subunits (5, 22). Then, the activated G proteins target different effectors (23, 24). G proteins are localized primarily to the PM where they interact with GPCRs; however, it is not known whether G proteins always remain at the PM or whether they might move into cells along endocytic pathways. Previous work showed that Gαs does not colocalize with β2 receptor on internal compartments after agonist stimulation, but the cellular distribution of Gαs was not examined (25).In general, cargo proteins at the plasma membrane (PM) enter the cell through a variety of endocytic mechanisms that can be divided into two main groups: clathrin-dependent endocytosis (CDE) and clathrin-independent endocytosis (CIE). CDE is used by PM proteins such as the transferrin receptor (TfR) that contain specific cytoplasmic sequences recognized by adaptor proteins allowing a rapid and efficient internalization through clathrin-coated vesicles (26, 27). In contrast, CIE is used by PM proteins that lack adaptor protein binding sequences including cargo proteins such as the major histocompatibility complex class I protein (MHCI), the glycosylphosphatidylinositol-anchored protein CD59, and integrins (2830). In HeLa cells CIE is independent of, and CDE dependent on, clathrin and dynamin and thus the two different endocytic pathways are distinct and well defined (31). After internalization in separate vesicles, MHCI-containing vesicles from CIE and transferrin receptor-containing vesicles from CDE subsequently fuse with the early endosomal compartment that is associated with Rab5 and the early endosomal antigen 1 (EEA1) (32). TfR is recycled back out to the PM in Rab4- and Rab11-dependent processes. In contrast, some MHCI is trafficked on to late endosomes and lysosomes for degradation, and some is recycled back out to the PM along tubular endosomes that lack TfR and emanate from the juxtanuclear area. Recycling of MHCI back to the PM requires the activity of Arf6, Rab22, and Rab11 (33, 34).In this study, we analyzed the trafficking of GPCRs and their G proteins in the presence and absence of agonist in HeLa cells. We examined the trafficking of two prototypical class I GPCRs: the β2 adrenergic receptor (coupled to Gαs) and the M3 acetylcholine muscarinic receptor (coupled to Gαq). We find that β2 and M3 receptors traffic constitutively via CIE, and then, in the presence of agonist, they switch to the CDE pathway. We also examined the role of the third intracellular loop of the M3 receptor in this process. To our knowledge, this study represents the most comprehensive analysis of constitutive trafficking of class I GPCRs and related Gα proteins. We demonstrate that GPCRs are versatile PM cargos that utilize different mechanisms of internalization depending upon ligand activation. Considering the high level of homology between class I GPCRs, this evidence could be applicable to the other members of this family.  相似文献   

16.
17.
G蛋白偶联受体激酶(G protein-coupled receptor kinase,GRK)特异地使活化的G蛋白偶联受体(G protein-coupled receptor,GPCR)发生磷酸化及脱敏化,从而终止后者介导的信号转导通路。研究表明,GRK的功能被高度调控,并具有下行调节GPCR的能力。调控GRK功能的机制包括两个层次:(1)多种途径调控激酶的亚细胞定位及活性,包括GPCR介导、G蛋白偶联、磷脂作用、Ca^2 结合蛋白调控、蛋白激酶C活化、MAPK反馈抑制、小窝蛋白抑制等;(2)调控GRK表达水平,主要体现在其与某些疾病的联系。  相似文献   

18.
We investigated the regulatory effects of GRK2 on D2 dopamine receptor signaling and found that this kinase inhibits both receptor expression and functional signaling in a phosphorylation-independent manner, apparently through different mechanisms. Overexpression of GRK2 was found to suppress receptor expression at the cell surface and enhance agonist-induced internalization, whereas short interfering RNA knockdown of endogenous GRK2 led to an increase in cell surface receptor expression and decreased agonist-mediated endocytosis. These effects were not due to GRK2-mediated phosphorylation of the D2 receptor as a phosphorylation-null receptor mutant was regulated similarly, and overexpression of a catalytically inactive mutant of GRK2 produced the same effects. The suppression of receptor expression is correlated with constitutive association of GRK2 with the receptor complex as we found that GRK2 and several of its mutants were able to co-immunoprecipitate with the D2 receptor. Agonist pretreatment did not enhance the ability of GRK2 to co-immunoprecipitate with the receptor. We also found that overexpression of GRK2 attenuated the functional coupling of the D2 receptor and that this activity required the kinase activity of GRK2 but did not involve receptor phosphorylation, thus suggesting the involvement of an additional GRK2 substrate. Interestingly, we found that the suppression of functional signaling also required the Gβγ binding activity of GRK2 but did not involve the GRK2 N-terminal RH domain. Our results suggest a novel mechanism by which GRK2 negatively regulates G protein-coupled receptor signaling in a manner that is independent of receptor phosphorylation.  相似文献   

19.
A number of recent technical solutions have led to significant advances in G protein-coupled receptor (GPCR) structural biology. Apart from a detailed mechanistic view of receptor activation, the new structures have revealed novel ligand binding sites. Together, these insights provide avenues for rational drug design to modulate the activities of these important drug targets. The application of structural data to GPCR drug discovery ushers in an exciting era with the potential to improve existing drugs and discover new ones. In this review, we focus on technical solutions that have accelerated GPCR crystallography as well as some of the salient findings from structures that are relevant to drug discovery. Finally, we outline some of the approaches used in GPCR structure based drug design.  相似文献   

20.
Correct positioning of neurotransmitter-gated receptors at postsynapses is essential for synaptic transmission. At Caenorhabditis elegans neuromuscular junctions, clustering of levamisole-sensitive acetylcholine receptors (L-AChRs) requires the muscle-secreted scaffolding protein LEV-9, a multidomain factor containing complement control protein (CCP) modules. Here we show that LEV-9 needs to be cleaved at its C terminus to exert its function. LEV-9 cleavage is not required for trafficking nor secretion but directly controls scaffolding activity. The cleavage site is evolutionarily conserved, and post-translational cleavage ensures the structural and functional decoupling between different isoforms encoded by the lev-9 gene. Data mining indicates that most human CCP-containing factors are likely cleaved C-terminally from CCP tandems, suggesting that not only domain architectures but also cleavage location can be conserved in distant architecturally related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号