首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

3.
The cell''s endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein markers of the endomembrane system.Membrane compartmentalization is an essential mechanism for eukaryotic life, by which cells separate and control biological processes. Plant growth, development, and adaptation to biotic and abiotic stress all rely on the highly dynamic endomembrane system, yet we know comparatively little about the proteins regulating these dynamic trafficking events. The plasma membrane (PM) provides the main interface between the cell and its environment, mediating the transfer of material to and from the cell and is a primary site for perception of external signals. Transmembrane proteins are synthesized in the endoplasmic reticulum (ER) and trafficked to the PM via the Golgi, although there are other secretory routes for soluble cargo (discussed in (14)). Post-Golgi trafficking is the main route by which newly synthesized transmembrane proteins and cell wall glycans are delivered to the PM. In plants, secretory and endocytic traffic converge at the trans-Golgi network (TGN), which also functions as an early endosome (EE). Multivesicular bodies (MVBs) are the other main endosomal compartment in plants and serve as prevacuolar compartments (PVCs) or late endosomes (LE) destined for vacuolar degradation (reviewed (1, 5, 6)).Recycling and sorting of plasma membrane proteins is essential for generating the polar localization of auxin efflux transporters (discussed in (7)), formation of the cell plate during cell division (811), and in defense such as localized deposition of papilla reviewed in (12, 13). Furthermore, the subcellular localization of transporters and receptors is dynamically regulated. For example, the boron transporter (BOR1) exhibits polar localization and is internalized and degraded under conditions of high boron to reduce toxicity (14, 15). Similarly the receptor-like kinases (RLKs) flagellin-sensing 2 (FLS2) and brassinosteroid insensitive 1 (BRI1), important transmembrane receptors in antibacterial immunity and plant development, respectively, are constitutively endocytosed and recycled to the PM (1618). Both receptors and transporters are also cargoes of the LE/MVB trafficking route (16) and are probably sorted to the vacuole for degradation (19, 20). Importantly, FLS2 trafficking via the recycling endocytic or the late endocytic route depends on its activation status; inactive receptors are recycled while ligand-activated receptors are sorted to the late endosomal pathway (16). Similarly, the polar sorting of auxin efflux transporters depends on their phosphorylation status (21). These observations illustrate that membrane compartmentalization underpins important aspects of plant cell biology and has initiated a quest toward a better understanding of the endomembrane compartments and the routes and mechanisms by which cargo is trafficked and sorted within the cell.Membrane trafficking within the cell requires complex machinery consisting of a plethora of coat and adaptor proteins, small GTPases, targeting, tethering, and scission factors (reviewed in (22, 23)). Homologues of some animal and yeast and endomembrane regulators have been identified in plants, but the localization and function of many of these remain to be characterized. For example, members of the RAB GTPase family have been shown to have markedly different roles and localizations in plants compared with their animal and yeast homologs (24). Therefore, acquiring localization data for tethering complexes and other regulators in plant systems is essential. In Arabidopsis thaliana, some of these proteins have been developed as useful probes to visualize the different endomembrane compartments by fusion with fluorescent reporters (9, 2527). These include regulators of trafficking events such as RAB GTPases that are molecular switches responsible for the assembly of tethering and docking complexes and compartment identity. RAB proteins are widely used markers of endomembrane compartments, for example RABD2a/ARA5 labels the Golgi and TGN/EE as well as post-Golgi vesicles (4, 24, 26, 28), RABF2b/ARA7 localizes to TGN/EE and LE (25), RABF1/ARA6 is a marker of the LE/MVB vesicles (25, 29), and RABG3f localizes to MVBs and the tonoplast (26, 30).Fluorescent-tagged marker lines for the live-cell imaging of plant cells have been invaluable in defining the location of proteins within and between organelles and endomembrane compartments (26). However, microscopic investigation of membrane trafficking is limited by throughput, as only few proteins can be studied simultaneously. A powerful approach to large-scale identification of proteins in endomembrane compartments is through subcellular fractionation based on physical properties to directly isolate or enrich for the subcellular compartment of interest. Subcellular fractionation-based proteomics have been successfully used to decipher the steady state and cargo proteomes of, including but not limited to, the ER, the vacuole, PM, mitochondria and chloroplasts, and smaller vesicle-like compartments such as peroxisomes and Golgi (3141). However, the smaller, transitory vesicles of the secretory and endocytic pathways have proved challenging to purify for reliable proteomic analysis. To overcome this, affinity purification of vesicles was established in animal cells (42, 43) and recently successfully applied in plants in combination with subcellular fractionation. Affinity purification and mass spectrometry (MS) of syntaxin of plants 61 (SYP61)-positive TGN/EE compartments identified 145 proteins specifically enriched in (44), while affinity isolation of VHA-a1-GFP (vacuolar H+ ATPase A1) identified 105 proteins associated with the TGN/EE (45). The VHA-A1 affinity purification data were then further refined using density gradient centrifugation to differentiate cargo and steady-state proteins (45).We have further explored affinity purification of fluorescent-tagged markers localizing to defined compartments to identify proteins associated with trafficking. Our motivation was to dissect the trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with small GTPases in the RAB family. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for Golgi/TGN/EE/secretory vesicles, LE/MVB compartments, LE/MVB compartments and LE/MVB/tonoplast, respectively. Additionally, we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles (CCVs) and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast (26, 27, 29, 46, 47) as comparisons. Our objective was to identify transient cargo proteins, tethers, and docking factors associated with dynamic subdomains of the endomembrane system, to supplement better-characterized “steady-state” components, and to identify components of recycling and vacuolar trafficking pathways.  相似文献   

4.
5.
6.
7.
Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d ≥ PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.Infection with Helicobacter pylori strains bearing cagA (cytotoxin-associated gene A)-positive strains is the strongest risk factor for the development of gastric carcinoma, the second leading cause of cancer-related death worldwide (13). The cagA gene is located within a 40-kb DNA fragment, termed the cag pathogenicity island, which is specifically present in the genome of cagA-positive H. pylori strains (46). In addition to cagA, there are ∼30 genes in the cag pathogenicity island, many of which encode a bacterial type IV secretion system that delivers the cagA-encoded CagA protein into gastric epithelial cells (710). Upon delivery into gastric epithelial cells, CagA is localized to the plasma membrane, where it undergoes tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-Tyr-Ala motifs by Src family kinases or c-Abl kinase (1114). The C-terminal Glu-Pro-Ile-Tyr-Ala-containing region of CagA is noted for the structural diversity among distinct H. pylori isolates. Oncogenic potential of CagA has recently been confirmed by a study showing that systemic expression of CagA in mice induces gastrointestinal and hematological malignancies (15).When expressed in gastric epithelial cells, CagA induces morphological transformation termed the hummingbird phenotype, which is characterized by the development of one or two long and thin protrusions resembling the beak of the hummingbird. It has been thought that the hummingbird phenotype is related to the oncogenic action of CagA (7, 1619). Pathophysiological relevance for the hummingbird phenotype in gastric carcinogenesis has recently been provided by the observation that infection with H. pylori carrying CagA with greater ability to induce the hummingbird phenotype is more closely associated with gastric carcinoma (2023). Elevated motility of hummingbird cells (cells showing the hummingbird phenotype) may also contribute to invasion and metastasis of gastric carcinoma.In host cells, CagA interacts with the SHP-2 phosphatase, C-terminal Src kinase, and Crk adaptor in a tyrosine phosphorylation-dependent manner (16, 24, 25) and also associates with Grb2 adaptor and c-Met in a phosphorylation-independent manner (26, 27). Among these CagA targets, much attention has been focused on SHP-2 because the phosphatase has been recognized as a bona fide oncoprotein, gain-of-function mutations of which are found in various human malignancies (17, 18, 28). Stable interaction of CagA with SHP-2 requires CagA dimerization, which is mediated by a 16-amino acid CagA-multimerization (CM)2 sequence present in the C-terminal region of CagA (29). Upon complex formation, CagA aberrantly activates SHP-2 and thereby elicits sustained ERK MAP kinase activation that promotes mitogenesis (30). Also, CagA-activated SHP-2 dephosphorylates and inhibits focal adhesion kinase (FAK), causing impaired focal adhesions. It has been shown previously that both aberrant ERK activation and FAK inhibition by CagA-deregulated SHP-2 are involved in induction of the hummingbird phenotype (31).Partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) is an evolutionally conserved serine/threonine kinase originally isolated in C. elegans (3234). Mammalian cells possess four structurally related PAR1 isoforms, PAR1a/MARK3, PAR1b/MARK2, PAR1c/MARK1, and PAR1d/MARK4 (3537). Among these, PAR1a, PAR1b, and PAR1c are expressed in a variety of cells, whereas PAR1d is predominantly expressed in neural cells (35, 37). These PAR1 isoforms phosphorylate microtubule-associated proteins (MAPs) and thereby destabilize microtubules (35, 38), allowing asymmetric distribution of molecules that are involved in the establishment and maintenance of cell polarity.In polarized epithelial cells, CagA disrupts the tight junctions and causes loss of apical-basolateral polarity (39, 40). This CagA activity involves the interaction of CagA with PAR1b/MARK2 (19, 41). CagA directly binds to the kinase domain of PAR1b in a tyrosine phosphorylation-independent manner and inhibits the kinase activity. Notably, CagA binds to PAR1b via the CM sequence (19). Because PAR1b is present as a dimer in cells (42), CagA may passively homodimerize upon complex formation with the PAR1 dimer via the CM sequence, and this PAR1-directed CagA dimer would form a stable complex with SHP-2 through its two SH2 domains.Because of the critical role of CagA in gastric carcinogenesis (7, 1619), it is important to elucidate the molecular basis underlying the morphogenetic activity of CagA. In this study, we investigated the role of PAR1 isoforms in induction of the hummingbird phenotype by CagA, and we obtained evidence that CagA-mediated inhibition of PAR1 kinases contributes to the development of the morphological change by perturbing microtubules and non-muscle myosin II.  相似文献   

8.
9.
10.
11.
12.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

13.
14.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

15.
16.
Clathrin-coated vesicles (CCVs) originating from the trans-Golgi network (TGN) provide a major transport pathway from the secretory system to endosomes/lysosomes. Herein we describe paralogous Sec14 domain-bearing proteins, clavesin 1/CRALBPL and clavesin 2, identified through a proteomic analysis of CCVs. Clavesins are enriched on CCVs and form a complex with clathrin heavy chain (CHC) and adaptor protein-1, major coat components of TGN-derived CCVs. The proteins co-localize with markers of endosomes and the TGN as well as with CHC and adaptor protein-1. A membrane mimic assay using the Sec14 domain of clavesin 1 reveals phosphatidylinositol 3,5-bisphosphate as a specific lipid partner. Phosphatidylinositol 3,5-bisphosphate is localized to late endosomes/lysosomes, and interestingly, isoform-specific knockdown of clavesins in neurons using lentiviral delivery of interfering RNA leads to enlargement of a lysosome-associated membrane protein 1-positive membrane compartment with no obvious influence on the CCV machinery at the TGN. Since clavesins are expressed exclusively in neurons, this new protein family appears to provide a unique neuron-specific regulation of late endosome/lysosome morphology.Proteins entering the secretory pathway move through the Golgi apparatus to the trans-Golgi network (TGN)4 where they are sorted and packaged into carrier vesicles, including clathrin-coated vesicles (CCVs) for transport to their final destination (1). Adaptor protein-1 (AP-1), which is recruited to the TGN through dual interactions with Arf1 and phosphatidylinositol 4-phosphate (2), recruits clathrin to initiate CCV formation. AP-1 and clathrin form the membrane coat that shapes the vesicle and recruits an array of regulatory/accessory proteins, which control numerous aspects of CCV formation and function (3). Interactions with the clathrin·AP-1 coat complex also serve to recruit both transmembrane and cytosolic cargo to CCVs, allowing for their transport from the TGN to the endosomal network.The specificity and function of intracellular compartments depends in part on the presence of distinct PtdIns species. For example, phosphatidylinositol 4-phosphate is found predominantly at the TGN and contributes to AP-1 recruitment, whereas phosphatidylinositol 3-phosphate recruits effectors, such as EEA1 (early endosome antigen 1), to early endosomes to mediate membrane fusion (49). Early endosomes subsequently transition into late endosomes/lysosomes, and during this process, phosphatidylinositol 3-phosphate is converted to PtdIns(3,5)P2 via the action of a phosphatidylinositol 3-phosphate 5-kinase named Fab1p in yeast and PIKfyve in mammals (10). PIKfyve is part of a protein complex nucleated by Vac14 (11, 12), and disruption of this complex leads to decreased PtdIns(3,5)P2 levels and the formation of enlarged cytoplasmic vacuoles of endosomal/lysosomal origin (10, 13, 14). Intriguingly, despite the fact that Vac14 is found in all tissues (15) and regulates a ubiquitous trafficking process (10), decreases in PtdIns(3,5)P2 levels resulting from Vac14 knock-out show massive neurodegeneration with little effect on other tissues (16). This neuron-specific effect has remained mysterious due to the lack of exclusively neuronal factors targeting PtdIns(3,5)P2.The Sec14 domain is an evolutionarily ancient protein module that in humans is found in more than 45 proteins encoded by at least 25 genes (17). Mutations in several Sec14 proteins lead to human diseases, including neurodegeneration (18), yet most of the Sec14 proteins in mammals remain uncharacterized. The yeast protein Sec14p is the prototype for this module (19). Sec14p is essential for the transport of proteins from the Golgi (19), but more recently it was also found to be involved in the trafficking of protein cargo, specifically the mating factor receptor Ste3, from the plasma membrane via endosomes to the yeast vacuole (17). The yeast vacuole is the equivalent of the lysosome in mammalian cells. Yeast Sec14p is a phospholipid transfer protein that extracts phosphatidylinositol and phosphatidylcholine from membranes in vitro and regulates the metabolism of these lipids in cells (19, 20). Sec14p is composed of the Sec14 domain only, whereas the majority of Sec14 proteins in mammals contain a Sec14 domain in conjunction with other modules or protein/lipid binding domains (21, 22). In the few well characterized examples, these proteins function to integrate lipid binding/metabolism with other biological functions (21, 22).In a subcellular proteomic analysis of CCVs from the brain, we identified eight novel open reading frames, including one encoding an Sec14 domain (23, 24). A subsequent bioinformatics analysis revealed a second, paralogous Sec14 protein. We now demonstrate that the proteins, which we have named clavesin (clathrin vesicle-associated Sec14 protein) 1 and 2, are neuron-specific proteins that function in the regulation of lysosome morphology.  相似文献   

17.
18.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号