首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The present study was designed to investigate the effects of benzyloxicarbonyl-l-phenylalanyl-alanine-fluoromethylketone (Z-FA.FMK), an inhibitor of cathepsin B on lung injury that occurs concurrently with liver injury induced by d-galactosamine/tumor necrosis factor-alpha (d-GalN/TNF-α). Four groups of BALB/c male mice were treated as follows: Group 1—mice receiving intravenous (iv) injections of physiological saline; Group 2—administered with 8 mg/kg Z-FA.FMK by iv injection; Group 3—mice treated with 700 mg/kg d-GalN and 15 μg/kg TNF-α by sequential intraperitoneal (ip) injection; Group 4—treated with 700 mg/kg d-GalN and 15 μg/kg TNF-α by sequential ip injection 1 h after administration with 8 mg/kg Z-FA.FMK. Mice from Groups 3 and 4 were sacrificed 4 h after d-GalN/TNF-α injections. The mice treated with d-GalN/TNF-α showed lung damage; increased TNF receptor-associated factor immunoreactivity, lipid peroxidation, protein carbonyl content, and lactate dehydrogenase activity; decreased catalase, superoxide dismutase, and paraoxonase activities. Treatment with Z-FA.FMK resulted in an improvement of these alterations in d-GalN/TNF-α-administered mice. The apoptotic index of type-II pneumocytes was the almost same in the four study groups, but pneumocytes labeled with proliferating cell nuclear antigen antibody was more numerous in Group 4 mice. Our results show that d-GalN/TNF-α results in lung damage without induction of apoptosis. Treatment with Z-FA.FMK stimulates proliferation of type-II pneumocytes and improves degenerative alterations in injured lung occurred with liver injury induced by d-GalN/TNF-α.  相似文献   

2.

Background

Eradication of bovine tuberculosis (bTB) through the application of test-and-cull programs is a declared goal of developed countries in which the disease is still endemic. Here, longitudinal data from more than 1,700 cattle herds tested during a 12?year-period in the eradication program in the region of Madrid, Spain, were analyzed to quantify the within-herd transmission coefficient (??) depending on the herd-type (beef/dairy/bullfighting). In addition, the probability to recover the officially bTB free (OTF) status in infected herds depending on the type of herd and the diagnostic strategy implemented was assessed using Cox proportional hazard models.

Results

Overall, dairy herds showed higher ?? (median 4.7) than beef or bullfighting herds (2.3 and 2.2 respectively). Introduction of interferon-gamma (IFN-??) as an ancillary test produced an apparent increase in the ?? coefficient regardless of production type, likely due to an increase in diagnostic sensitivity. Time to recover OTF status was also significantly lower in dairy herds, and length of bTB episodes was significantly reduced when the IFN-?? was implemented to manage the outbreak.

Conclusions

Our results suggest that bTB spreads more rapidly in dairy herds compared to other herd types, a likely cause being management and demographic-related factors. However, outbreaks in dairy herds can be controlled more rapidly than in typically extensive herd types. Finally, IFN-?? proved its usefulness to rapidly eradicate bTB at a herd-level.  相似文献   

3.
4.

Background

The endocardial endothelium that lines the inner cavity of the heart is distinct from the microvascular endothelial cells and modulates cardiac muscle performance in a manner similar to the vascular endothelial modulation of vascular structure and vasomotor tone. Although the modulatory effects of endocardial endothelium (EE) on cardiomyocytes are firmly established, the regulatory effects of endocardial endothelium on the cardiac interstitium and its cellular components remain ill defined.

Methods and Results

We investigated whether the stimulatory effect of EE on cardiac fibroblasts would be altered when EECs are activated by the cytokine tumor necrosis factor-α (TNF-α) or the endotoxin bacterial lipopolysaccharide (LPS). Both TNF-α and LPS were found to independently attenuate the stimulatory effect of EE on cardiac fibroblasts. These agents lowered the synthesis or release of ET-1 and increased the secretion of TGF-β and NO.

Conclusion

The findings of this study using endocardial endothelial cells (EECs) and neonatal cardiac fibroblasts demonstrate that pro-inflammatory cytokines cause altered secretion of paracrine factors by EECs and inhibit proliferation and lower collagen synthesis in fibroblasts. These changes may influence fibroblast response and extra cellular matrix remodeling in pathological conditions of the heart.  相似文献   

5.

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.  相似文献   

6.

Background

An integrative theoretical framework, developed for cross-disciplinary implementation and other behaviour change research, has been applied across a wide range of clinical situations. This study tests the validity of this framework.

Methods

Validity was investigated by behavioural experts sorting 112 unique theoretical constructs using closed and open sort tasks. The extent of replication was tested by Discriminant Content Validation and Fuzzy Cluster Analysis.

Results

There was good support for a refinement of the framework comprising 14 domains of theoretical constructs (average silhouette value 0.29): ??Knowledge??, ??Skills??, ??Social/Professional Role and Identity??, ??Beliefs about Capabilities??, ??Optimism??, ??Beliefs about Consequences??, ??Reinforcement??, ??Intentions??, ??Goals??, ??Memory, Attention and Decision Processes??, ??Environmental Context and Resources??, ??Social Influences??, ??Emotions??, and ??Behavioural Regulation??.

Conclusions

The refined Theoretical Domains Framework has a strengthened empirical base and provides a method for theoretically assessing implementation problems, as well as professional and other health-related behaviours as a basis for intervention development.  相似文献   

7.
8.
9.

Background

Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes.

Methods

The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 ??g/g), PMA 4 ??g/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined.

Results

PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent.

Conclusions

Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen.  相似文献   

10.
Seahorse (Hippocampus Kuda Bleeler) has been used as traditional medicine for thousands of years, in Eastern Asia. In this study of the methanol extract of fresh Hippocampus Kuda, the new compounds 2-ethyldecyl 2-ethylundecyl phthalate (1), 2, 12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecylphthalate (2), along with a known Bis(2-ethylheptyl) phthalate (3) were isolated. They were tested for their antioxidant activities, including lipid peroxidation inhibitory activity, DPPH radical scavenging, hydroxyl radical scavenging, superoxide anion radical scavenging, alkyl radical scavenging, and cellular radicals; these can be detected using a fluorescence probe, 2??,7??-dichlorofluorescin diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on mouse macrophages, RAW264.7 cell. Compound (2) exhibited the highest antioxidant activity and inhibitory intracellular ROS than another compounds (1, 3). Furthermore, MTT assay showed no cytotoxicity on mouse macrophages cell (RAW264.7) and human fetal lung fibroblast cell line (MRC-5). This antioxidant property depends on concentration and increasing with increased amount of the compound.  相似文献   

11.

Background

Control of currently circulating re-assorted low-pathogenicity avian influenza (LPAI) H9N2 is a major concern for both animal and human health. Thus, an improved LPAI H9N2 vaccination strategy is needed to induce complete immunity in chickens against LPAI H9N2 virus strains. Cytokines play a crucial role in mounting both the type and extent of an immune response generated following infection with a pathogen or after vaccination. To improve the efficacy of inactivated LPAI H9N2 vaccine, attenuated Salmonella enterica serovar Typhimurium was used for oral co-administration of chicken interferon-?? (chIFN-??) and chicken interleukin-18 (chIL-18) as natural immunomodulators.

Results

Oral co-administration of S. enterica serovar Typhimurium expressing chIFN-?? and chIL-18, prior to vaccination with inactivated AI H9N2 vaccine, modulated the immune response of chickens against the vaccine antigen through enhanced humoral and Th1-biased cell-mediated immunity, compared to chickens that received single administration of S. enterica serovar Typhimurium expressing either chIFN-?? or chIL-18. To further test the protective efficacy of this improved vaccination regimen, immunized chickens were intra-tracheally challenged with a high dose of LPAI H9N2 virus. Combined administration of S. enterica serovar Typhimurium expressing chIFN-?? and chIL-18 showed markedly enhanced protection compared to single administration of the construct, as determined by mortality, clinical severity, and feed and water intake. This enhancement of protective immunity was further confirmed by reduced rectal shedding and replication of AIV H9N2 in different tissues of challenged chickens.

Conclusions

Our results indicate the value of combined administration of chIFN-?? and chIL-18 using a Salmonella vaccine strain to generate an effective immunization strategy in chickens against LPAI H9N2.  相似文献   

12.

Key message

Nitric oxide improves copper tolerance via modulation of superoxide and hydrogen peroxide levels. This reflects the necessity of a well-coordinated interplay between NO and ROS during stress tolerance.

Abstract

Copper (Cu) excess causes toxicity and one probable consequence of this is the disturbance of cell redox state maintenance, inter alia, by reactive oxygen- (ROS) and nitrogen species (RNS). The objective of this paper was to examine the role of nitric oxide (NO) in Cu stress tolerance and its relationship with ROS in Arabidopsis. In agar-grown seedlings, concentration-dependent Cu accumulation was observed. The 5 μM Cu resulted in reduced cell viability in the NO overproducing nox1 and gsnor1-3 root tips compared to the wild-type (WT). In contrast, 25 and 50 μM Cu caused higher viability in these mutants, while in the NO-lacking nia1nia2 lower viability was detected than in the WT. The exogenous NO donor enhanced cell viability and scavenging endogenous NO decreased it in Cu-exposed WT seedlings. Besides, SNP in nia1nia2 roots led to the improvement of viability. The ascorbic acid-deficient mutants (vtc2-1, vtc2-3) possessing slightly elevated ROS levels proved to be Cu sensitive, while miox4 showing decreased ROS production was more tolerant to Cu than the WT. In nox1 and gsnor1-3, Cu did not induce superoxide formation, and H2O2 accumulation occurred only in the case of NO deficiency. Based on these, under mild stress NO intensifies cell injury, while in the case of severe Cu excess it contributes to better viability. ROS were found to be responsible for aggravation of Cu-induced damage. NO alleviates acute Cu stress via modulation of O 2 ·? and H2O2 levels reflecting the necessity of a well-coordinated interplay between NO and ROS during stress tolerance.  相似文献   

13.

Background

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.

Methods

Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.

Results

Treatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.

Conclusions

These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.  相似文献   

14.

Key message

The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone.

Abstract

Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.  相似文献   

15.

Background

The cytosolic adaptor protein ADAP (adhesion and degranulation promoting adapter protein) is expressed by T cells, natural killer cells, myeloid cells and platelets. ADAP is involved in T-cell-receptor-mediated inside-out signaling, which leads to integrin activation, adhesion and reorganization of the actin cytoskeleton. However, little is known about the role of ADAP in myeloid cells. In the present study, we analyzed the function of ADAP in bone-marrow-derived dendritic cells (BMDCs) from ADAP-deficient mice.

Results

ADAP-deficient BMDCs showed almost normal levels of antigen uptake, adhesion, maturation, migration from the periphery to the draining lymph nodes, antigen-specific T-cell activation, and production of the proinflammatory cytokines IL-6 and TNF-??. Furthermore, we provide evidence that the activation of signaling pathways after lipopolysaccharide (LPS) stimulation are not affected by the loss of ADAP. In contrast, ADAP-deficient BMDCs showed defects in CD11c-mediated cellular responses, with significantly diminished production of IL-6, TNF-?? and IL-10. Actin polymerization was enhanced after CD11c integrin stimulation.

Conclusions

In summary, we propose that the adapter molecule ADAP is critical for selected CD11c integrin-mediated functions of dendritic cells.  相似文献   

16.
17.

Background

The activation of mononuclear phagocytes (MPs), including monocytes, macrophages and dendritic cells, contributes to central nervous system inflammation in various neurological diseases. In HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), MPs are reservoirs of HTLV-I, and induce proinflammatory cytokines and excess T cell responses. The virus-infected or activated MPs may play a role in immuneregulation and disease progression in patients with HTLV-I-associated neurological diseases.

Results

Phenotypic analysis of CD14+ monocytes in HAM/TSP patients demonstrated high expression of CX3CR1 and HLA-DR in CD14lowCD16+ monocytes, compared to healthy normal donors (NDs) and asymptomatic carriers (ACs), and the production of TNF-?? and IL-1?? in cultured CD14+ cells of HAM/TSP patients. CD14+ cells of HAM/TSP patients also showed acceleration of HTLV-I Tax expression in CD4+ T cells. Minocycline, an inhibitor of activated MPs, decreased TNF-?? expression in CD14+ cells and IL-1?? release in PBMCs of HAM/TSP patients. Minocycline significantly inhibited spontaneous lymphoproliferation and degranulation/IFN-?? expression in CD8+ T cells of HAM/TSP patients. Treatment of minocycline also inhibited IFN-?? expression in CD8+ T cells of HAM/TSP patients after Tax11-19 stimulation and downregulated MHC class I expression in CD14+ cells.

Conclusion

These results demonstrate that minocycline directly inhibits the activated MPs and that the downregulation of MP function can modulate CD8+ T cells function in HAM/TSP patients. It is suggested that activated MPs may be a therapeutic target for clinical intervention in HAM/TSP.  相似文献   

18.

Background

A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-?? precursor protein (APP) processing, which is genetically linked to Alzheimer??s disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by ??-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). ??-cleavage of APP yields the ??-carboxyl-terminal (??-CTF) and the amino-terminal-soluble APP?? (sAPP??) fragments. ??-secretase processing of ??-CTF generates A??, which is considered the main cause of AD. However, inhibiting A?? production did not rescue the deficits of FDDKI mice, suggesting that sAPP??/??-CTF, and not A??, are the toxic species causing memory loss.

Results

Here, we have further analyzed the effect of ??-secretase inhibition. We show that treatment with a ??-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the ??/??-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of ??-secretase activity.

Conclusion

This harmful effect of the GSI is in sharp contrast with a pathogenic role for A??, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic ??/??-CTFs caused by GSI treatment. However, ??-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other ??-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting ??-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis and predict the clinical outcome of therapeutic agents for AD.  相似文献   

19.

Background

Upregulation of nuclear factor kappa B (NF??B) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NF??B, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro.

Methods

We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment.

Results

Neuropeptide (NP) stimulation induced nuclear translocation of NF??B in a dose-dependent manner in AI cells, also evident as reduced total inhibitor ??B (I??B) levels and increased DNA binding in EMSA. These effects were preceded by increased 20?S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NF??B, I??B kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA.

Conclusions

Our results support evidence for a direct mechanistic connection between the NPs and NF??B/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state.  相似文献   

20.

Background

Bovine Leukemia virus (BLV) is a deltaretrovirus that induces lymphoproliferation and leukemia in ruminants. In ex vivo cultures of B lymphocytes isolated from BLV-infected sheep show that spontaneous apoptosis is reduced. Here, we investigated the involvement of reactive oxygen species (ROS) in this process.

Results

We demonstrate that (i) the levels of ROS and a major product of oxidative stress (8-OHdG) are reduced, while the thioredoxin antioxidant protein is highly expressed in BLV-infected B lymphocytes, (ii) induction of ROS by valproate (VPA) is pro-apoptotic, (iii) inversely, the scavenging of ROS with N-acetylcysteine inhibits apoptosis, and finally (iv) the levels of ROS inversely correlate with the proviral loads.

Conclusion

Together, these observations underline the importance of ROS in the mechanisms of inhibition of apoptosis linked to BLV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号