首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Compelling evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OECs), specialized glia in the olfactory system, combined with specific training may be therapeutically useful in the central nervous system (CNS) injuries and neurodegenerative diseases. The unique function of OECs could mainly attribute to both production of cell adhesion molecules and secretion of growth factors in OECs, which support neuron survival and neurite outgrowth. However, little is known about whether engulfment of neuronal degenerative debris by OECs also equally contributes to neuronal survival and neurite outgrowth. Furthermore, the molecular mechanisms responsible for neuronal degenerative corpses' removal remain elusive. Here, we used an in vitro model of primary culture of spinal cord neurons to investigate the effect of engulfment of degenerative neuron debris by OECs on neuronal survival and neurite outgrowth and the possible molecular mechanisms. Our results showed that OECs can engulf an amount of degenerated neuron debris, and this phagocytosis can make a substantial contribution to neuron growth, as demonstrated by increased number of neurons with longer neurite length and richer neurite branches when compared with the combination of neuron debris and OEC conditioned medium (OECCM). Moreover, p38 mitogen-activated protein kinase (p38MAPK) signaling pathway may mediate the OEC engulfment of debris because the p38MAPK-specific inhibitor, SB203580, can abrogate all the positive effects of OECs, including clearance of degenerated neuron debris and generation of bioactive molecules, indicating that p38MAPK is required for the process of phagocytosis of the neuron debris. In addition, the OEC phagocytic activity had no influence on its generation of bioactive molecules. Therefore, these findings provide new insight into further investigations on the OEC role in the repair of traumatic CNS injury and neurodegenerative diseases.  相似文献   

2.
建立p38丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)放射自显影激酶活性测定方法,并应用于血管内皮细胞中p38 MAPK活性动态变化的研究.结果表明放射自显影激酶活性测定方法具有很好的量效关系、灵敏性和特异性.在脂多糖(lipopolysaccharide, LPS)刺激的血管内皮细胞,p38 MAPK在LPS刺激15 min后活性增高,30~60 min达高峰,120 min后活性逐渐下降,较好地反映了LPS刺激的内皮细胞中p38 MAPK活性的动态变化.国内实验室完全有可能和条件,建立本国的放射自显影激酶活性测定方法,并应用于信号转导的研究.  相似文献   

3.
《Autophagy》2013,9(2):292-293
Autophagy is induced in mammalian cells by nutrient deprivation, which acts through repression of the protein kinase mammalian target of rapamycin (mTOR) and may involve other unknown mechanisms. Mitogen-activated protein kinases (MAPKs), and in particular p38 MAPK, are implicated in amino acid signalling. Furthermore, the extracellular signal-regulated kinase (ERK) and p38 regulate autophagy in response to various stimuli. However, the molecular mechanisms of p38 regulation of autophagy are still widely unknown. Our recent data suggest that p38α MAPK negatively regulates the interaction of mAtg9 and a novel mAtg9 binding partner, p38IP, to control the levels of autophagy induced in response to starvation.  相似文献   

4.
While investigating the ability of p38 MAPK to regulate cytarabine (Ara C)-dependent differentiation of erythroleukemia K562 cells, we observed effects that indicated that the imidazoline class of p38 MAPK inhibitors prevented nucleoside transport. Incubation of K562 cells with SB203580, SB203580-iodo, or SB202474, an analogue of SB203580 that does not inhibit p38 MAPK activity, inhibited the uptake of [3H]Ara C or [3H]uridine and the differentiation of K562 cells. Consistent with the effects of these compounds on the nitrobenzylthioinosine (NBMPR)-sensitive equilibrative nucleoside transporter (ENT1), incubation with SB203580 or SB203580-iodo eliminated the binding of [3H]NBMPR to K562 cells or membranes isolated from human erythrocytes. Furthermore, using a uridine-dependent cell type (G9c), we observed that SB203580 or SB203580-iodo efficiently inhibited the salvage synthesis of pyrimidine nucleotides in vivo. Thus these studies demonstrate that the NBMPR-sensitive equilibrative nucleoside transporters are novel and unexpected targets for the p38 MAPK inhibitors at concentrations typically used to inhibit protein kinases.  相似文献   

5.
p38 MAPK信号传导通路   总被引:21,自引:0,他引:21  
姜勇  韩家淮 《生命科学》1999,11(3):102-106
丝裂原活化蛋白激酶(mitogen-activatedporoteinkinase,MAPK)介导了生长、发育,分裂,死亡,以及细胞间的功能同步等多种细胞生理功能,在哺乳动物细胞中已发现和克隆了ERK、JNK/SAPK,ERK5/BMK1和p38/RK四个MAPK亚族,这些新的MAPK介导了物理,化学反激,细菌产物,炎性细胞因子等多种刺激引起的细胞反应,p38亚族至少包括p38(α),p38β,p  相似文献   

6.
Here, we investigate regulation of coat protein complex II (COPII) recruitment onto ER export sites in permeabilized cells. In cytosols from nocodazole treated HeLa cells we find COPII loading is inhibited. The stress kinase p38 MAPK is activated in these cytosols and COPII loading can be rescued by depletion of p38 MAPK α or by the p38 MAPK inhibitor (SB203580) but not by inhibition/depletion of cdc2. These observations indicate regulation of the early secretory pathway by p38 MAPK.  相似文献   

7.
8.
Trisubstituted pyridazines were synthesized and evaluated as in vitro inhibitors of p38MAPK. The most active isomers were those possessing an aryl group alpha and a heteroaryl group beta relative to the nitrogen atom in the 2-position of the central pyridazine. Additionally, substitution in the 6-position of the central pyridazine with a variety of dialkylamino substituents afforded a set of inhibitors having good (p38 IC50 1-20 nM) in vitro activity.  相似文献   

9.
Regulation of GDF-8 signaling by the p38 MAPK   总被引:3,自引:0,他引:3  
Philip B  Lu Z  Gao Y 《Cellular signalling》2005,17(3):365-375
  相似文献   

10.
11.
IL-12 is a dimeric cytokine that is produced primarily by APCs. In this study we examined the role that the p38 MAPKs (MAPK/p38) play in regulating IL-12 production. We show that inhibition of p38 dramatically increased IL-12 production upon stimulation, while decreasing TNF-α. This reciprocal effect on these two cytokines following MAPK/p38 inhibition occurred in many different APCs, following a variety of different stimuli. IL-12 production was also increased in macrophages treated with small interfering RNA to limit p38α expression, and in macrophages deficient in MKK3, a kinase upstream of p38. The increase in IL-12 production following MAPK/p38 inhibition appears to be due to enhanced IL-12 (p40) mRNA stability. We show that MAPK/p38 inhibition can promote Th1 immune responses and thereby enhance vaccine efficacy against leishmaniasis. In a mouse model of Leishmania major infection, vaccination with heat-killed L. major plus CpG and SB203580 elicited complete protection against infection compared with heat-killed L. major plus CpG without SB203580. Thus, this work suggests that MAPK/p38 inhibitors may be applied as adjuvants to bias immune responses and improve vaccinations against intracellular pathogens.  相似文献   

12.
NKT cells are known to rapidly produce a large amount of cytokines upon activation. Although a number of signaling pathways that regulate the development of NKT cells have been identified, the signaling pathways involved in the regulation of NKT cell cytokine production remain unclear. In this study, we show that the p38 MAPK pathway is dispensable for the development of NKT cells. However, NKT cell cytokine production and NKT-mediated liver damage are highly dependent on activation of this pathway. p38 MAPK does not substantially affect cytokine gene expression in NKT cells, but it regulates the synthesis of cytokines through the Mnk-eIF4E pathway. Thus, in addition to gene expression, translational regulation by p38 MAPK could be a novel mechanism that contributes to the overall production of cytokine by NKT cells.  相似文献   

13.
The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C(2)C(12) cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C(2)C(12) myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.  相似文献   

14.
Although p38 MAPK activation is essential for myogenesis, the upstream signaling mechanism that activates p38 during myogenesis remains undefined. We recently reported that p38 activation, myogenesis, and regeneration in cardiotoxin-injured soleus muscle are impaired in TNF- receptor double-knockout (p55–/–p75–/–) mice. To fully evaluate the role of TNF- in myogenic activation of p38, we tried to determine whether p38 activation in differentiating myoblasts requires autocrine TNF-, and whether forced activation of p38 rescues impaired myogenesis and regeneration in the p55–/–p75–/– soleus. We observed an increase of TNF- release from C2C12 or mouse primary myoblasts placed in low-serum differentiation medium. A TNF--neutralizing antibody added to differentiation medium blocked p38 activation and suppressed differentiation markers myocyte enhancer factor (MEF)-2C, myogenin, p21, and myosin heavy chain in C2C12 myoblasts. Conversely, recombinant TNF- added to differentiation medium stimulated myogenesis at 0.05 ng/ml while inhibited it at 0.5 and 5 ng/ml. In addition, differentiation medium-induced p38 activation and myogenesis were compromised in primary myoblasts prepared from p55–/–p75–/– mice. Increased TNF- release was also seen in cardiotoxin-injured soleus over the course of regeneration. Forced activation of p38 via the constitutive activator of p38, MKK6bE, rescued impaired myogenesis and regeneration in the cardiotoxin-injured p55–/–p75–/– soleus. These results indicate that TNF- regulates myogenesis and muscle regeneration as a key activator of p38. myocyte enhancer factor-2C; myogenin; p21; myosin heavy chain; Akt; tumor necrosis factor-; mitogen-activated protein kinase  相似文献   

15.
p38 MAPK signaling during murine preimplantation development   总被引:7,自引:0,他引:7  
Mitogen-activated protein kinase (MAPK) pathways mediate some important cellular processes and are likely to also regulate preimplantation development. The role of p38 MAP kinase signaling during murine preimplantation development was investigated in the present study. p38 MAPK, p38-regulated or -activated kinase (PRAK; MK5), map kinase-activated protein kinase 2 (MK2), and heat shock protein 25 (hsp25) mRNAs and proteins were detected throughout preimplantation development. Two-cell stage embryos cultured in the presence of SB220025 and SB203580 (specific inhibitors of p38 MAPK alpha/beta), progressed to the eight-cell stage with the same frequency as controls; however, treated embryos halted their development at the 8- to 16-cell stage. In addition, embryos treated with p38 MAPK inhibitors displayed a complete loss of MK2 and hsp25 phosphorylation and also a complete loss of filamentous actin as indicated by the absence of rhodamine-phalloidin staining. In these inhibitor-treated groups, the embryos were composed of a mixture of compacting and noncompacting cells, and the embryos were one to two cell divisions behind controls. Treated embryos remained viable as the developmental blockade was rescued by removing embryos from the drug treatment and placing them in drug-free medium until they progressed to the blastocyst stage. This study demonstrates that p38 MAPK activity is required to support development through the murine preimplantation interval.  相似文献   

16.
肺纤维化(Pulmonary fibrosis,PF)是一种进行性发展的、破坏性的纤维化疾病,其主要特征为肺泡上皮细胞损伤、炎性细胞浸润、上皮间充质转变、成纤维细胞的异常增殖和活化、细胞外基质的过度沉积,最终导致肺实质性的破坏。其具体机制不明,目前缺乏有效的治疗手段逆转这种疾病或阻止其发展。近年来的研究发现,信号传导通路在肺纤维化形成过程中的作用越来越受到关注,其中p38丝裂原活化蛋白激酶(p38mitogen-activated protein kinase,p38MAPK)信号通路通过介导炎性细胞浸润、成纤维细胞增殖等参与PF的形成过程。本文就p38MAPK在PF形成过程中的作用作一综述。  相似文献   

17.
18.
Mitogen activated protein kinase (MAPK) p38 has emerged as a survival protein in cells that are attacked by bacterial toxins forming small membrane pores. Activation of p38 by pore forming toxins (PFT) has been attributed to osmotic stress, but here we show that loss of K+ is likely to be the critical parameter. Several lines of evidence support this conclusion: First, osmoprotection did not prevent p38-phosphorylation in α-toxin-loaded cells. Second, treatment of cells with a K+ ionophore, or simple incubation in K+-free medium sufficed to cause robust p38-phosphorylation. Third, media containing high [K+] prevented p38-activation by Staphylococcus aureus α-toxin, Vibrio cholerae cytolysin (VCC), Streptolysin O (SLO), or Escherichia coli hemolysin (HlyA), but did not impair activation by H2O2. Fourth, potential roles of LPS, TLR4, or calcium-influx were ruled out. Therefore, we propose that PFT trigger the p38 MAPK-pathway by causing loss of cellular K+.  相似文献   

19.
Activation of p38 MAPK during porcine oocyte maturation   总被引:1,自引:0,他引:1  
  相似文献   

20.
p38 Mitogen-activated protein kinases (MAPK) are a family of Ser/Thr kinases that regulate important cellular processes such as stress responses, differentiation, and cell-cycle control . Activation of MAPK is achieved through a linear signaling cascade in which upstream kinases (MAPKKs) dually phosphorylate MAPKs at a conserved 3-amino-acid motif (Thr-X-Tyr) . G-protein-coupled receptor kinases (GRKs) are known to selectively phosphorylate G-protein-coupled receptors (GPCRs) and thus trigger desensitization . We report that GRK2 is a novel inactivating kinase of p38MAPK. p38 associates with GRK2 endogenously and is phosphorylated by GRK2 at Thr-123, a residue located at its docking groove. Mimicking phosphorylation at this site impairs the binding and activation of p38 by MKK6 and diminishes the capacity of p38 to bind and phosphorylate its substrates. Accordingly, p38 activation is decreased or increased when cellular GRK2 levels are enhanced or reduced, respectively. Changes in GRK2 levels and activity can modify p38-dependent processes such as differentiation of preadipocytic cells and LPS-induced cytokine release, enhanced in macrophages from GRK2(+/-) mice. Phosphorylation of p38 at a region key for its interaction with different partners uncovers a new mechanism for the regulation of this important family of kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号