首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Angiogenesis and microvascular leakage are features of chronic inflammatory diseases of which molecular mechanisms are poorly understood. We investigated the effects of interleukin-1β (IL-1β) on the expression and secretion of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) in porcine airway smooth muscle cells (PASMC) in relation to a nitric oxide (NO) pathway. Serum-deprived (48 h) PASMC were stimulated with IL-1β alone or with NO donor, l-arginine and/or NO synthase inhibitor l-NAME for 4 and 24 h. IL-1β did not affect PlGF release, but augmented VEGF release (2.4-fold) after 24 h. VEGF release was inhibited by l-NAME (531.8 ± 52 pg/ml), but restored and further elevated by l-arginine (1,529 ± 287 pg/ml). IL-1β up-regulated VEGF mRNA (1.8-fold) and this response was attenuated by l-NAME (1.1-fold) and augmented by l-arginine (3.8-fold) at 4 h. Restoration of a NO pathway by l-arginine in l-NAME-treated cells resulted in elevated VEGF mRNA levels (2.2-fold). [3H]Thymidine incorporation assay revealed enhanced porcine pulmonary artery endothelial cell proliferation in response to IL-1β, VEGF and PlGF, and this mitogenic effect was not influenced via the NO pathway. Our results suggest that a NO pathway modulates VEGF synthesis during inflammation contributing to bronchial angiogenesis and vascular leakage.  相似文献   

5.
Capillary leak in severe sepsis involves disruption of endothelial cell tight junctions. We modeled this process by TNF treatment of cultured human dermal microvascular endothelial cell (HDMEC) monolayers, which unlike human umbilical vein endothelial cells form claudin-5-dependent tight junctions and a high-resistance permeability barrier. Continuous monitoring with electrical cell-substrate impedance sensing revealed that TNF disrupts tight junction-dependent HDMEC barriers in discrete steps: an ~5% increase in transendothelial electrical resistance over 40 minutes; a decrease to ~10% below basal levels over 2 hours (phase 1 leak); an interphase plateau of 1 hour; and a major fall in transendothelial electrical resistance to < 70% of basal levels by 8–10 hours (phase 2 leak), with EC50 values of TNF for phase 1 and 2 leak of ~30 and ~150 pg/ml, respectively. TNF leak is reversible and independent of cell death. Leak correlates with disruption of continuous claudin-5 immunofluorescence staining, myosin light chain phosphorylation and loss of claudin-5 co-localization with cortical actin. All these responses require NF-κB signaling, shown by inhibition with Bay 11 or overexpression of IκB super-repressor, and are blocked by H-1152 or Y-27632, selective inhibitors of Rho-associated kinase that do not block other NF-κB-dependent responses. siRNA combined knockdown of Rho-associated kinase-1 and -2 also prevents myosin light chain phosphorylation, loss of claudin-5/actin co-localization, claudin-5 reorganization and reduces phase 1 leak. However, unlike H-1152 and Y-27632, combined Rho-associated kinase-1/2 siRNA knockdown does not reduce the magnitude of phase 2 leak, suggesting that H-1152 and Y-27632 have targets beyond Rho-associated kinases that regulate endothelial barrier function. We conclude that TNF disrupts TJs in HDMECs in two distinct NF-κB-dependent steps, the first involving Rho-associated kinase and the second likely to involve an as yet unidentified but structurally related protein kinase(s).  相似文献   

6.
Wet age-related macular degeneration (AMD) attacks the integrity of the retinal pigment epithelium (RPE) barrier system. The pathogenic process was hypothesized to be mediated by vascular endothelial growth factor (VEGF) and antagonized by pigment epithelium-derived factor (PEDF). To dissect these functional interactions, monolayer cultures of RPE cells were established, and changes in transepithelial resistance were evaluated after administration of PEDF, placenta growth factor (VEGF-R1 agonist), and VEGF-E (VEGF-R2 agonist). A recently described mechanism of VEGF inhibition in endothelia required the release of VEGF-R1 intracellular domain by γ-secretase. To evaluate this pathway in the RPE, cells were pretreated with inhibitors DAPT or LY411575. Processing of VEGF receptors was assessed by Western blot analysis. Administration of VEGF-E rapidly increased RPE permeability, and PEDF inhibited the VEGF-E response dose-dependently. Both γ-secretase antagonists prevented the inhibitory effects of PEDF. The co-administration of PEDF and VEGF-E depleted the amount of VEGF-R2 in the membrane and increased the amount of VEGF-R2 ectodomain in the media. Therefore, the inhibitory effect of PEDF appears to be mediated via the processing of VEGF-R2 by γ-secretase. γ-Secretase generates the amyloid-β (Aβ) peptide of Alzheimer disease from its precursor (amyloid precursor protein). This peptide is also a component of drusen in dry AMD. The results support the hypothesis that misregulation of γ-secretase may not only lead to Aβ deposits in dry AMD but can also be damaging to RPE function by blocking the protective effects of PEDF to prevent VEGF from driving the dry to wet AMD transition.Age-related macular degeneration (AMD)2 is often diagnosed by the appearance of subretinal fluid. This fluid causes a local detachment of the retina in the macular area resulting in decreased visual acuity in the center of the visual field (1). The resulting macular edema can lead to complete vision loss (2). Although the excessive fluid mainly comes from capillaries in the inner retina, the removal of subretinal fluid is dependent on the RPE. The maintenance of RPE barrier function is essential for the efficient removal of the fluid (3), and the disruption of the RPE barrier can eventually lead to choroidal neovascularization.Recent clinical studies have shown that intravitreally administered anti-VEGF compounds are effective therapies for choroidal neovascularization (46). Originally, VEGF was described as an endothelial angiogenic and vasopermeability factor. The leakage through the vessels of the inner retina increases in response to VEGF (7, 8). However, the release of VEGF also affects RPE function (911). We have recently shown that RPE barrier integrity is modulated by VEGF through apically oriented VEGF-R2 receptors (12). Thus, there is a growing body of evidence that intraocular VEGF can increase the permeability of both the inner and outer blood-retina barriers, contributing to the accumulation of subretinal fluid and macular edema.Pigment epithelium-derived factor was initially identified as a neurotrophic agent secreted by fetal human RPE cells (13). Subsequent experiments have recognized that PEDF is an endogenous antagonist of VEGF (14). In the eye, studies have provided evidence that endothelial quiescence and barrier function is achieved through a balance of VEGF and PEDF (15). The PEDF secretion pattern from the RPE cells is predominantly apical, and the interphotoreceptor matrix around the RPE microvilli is a major reservoir of PEDF (16, 17). Therefore, we hypothesize that PEDF can antagonize the breakdown of RPE function induced by the apical actions of VEGF.Several schemes have been proposed for the anti-VEGF activity of PEDF. A PEDF receptor has been identified, which has phospholipase A2 activity (18). PEDF binding proteins without clear receptor activity have also been found (19). In endothelial cells, PEDF has also been shown to compete with VEGF for binding at the VEGF-R2 receptor (20). PEDF was found to regulate VEGF expression (20, 21) and decrease VEGF receptor phosphorylation (14). A recent study in endothelia has elucidated a novel inhibitory mechanism of VEGF signaling via the PEDF-induced intramembrane proteolysis of VEGF-R1 by γ-secretase (22). The goal of our study is to determine if PEDF acts as an anti-permeability agent in the RPE and to begin to understand the cellular mechanism involved in this response.  相似文献   

7.
CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of β1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both β1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between β1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-β1 integrin complex formation identified using proximity ligation assays. Signaling downstream of β1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.  相似文献   

8.

Introduction

Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis.

Materials and methods

Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA.

Results

Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased.

Conclusions

Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study.  相似文献   

9.
Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5 and ALK1 TGF-β receptor signaling pathways were investigated in bovine aortic endothelial cells. We report that TGF-β drives podosome formation through ALK5 and the downstream effectors Smad2 and Smad3. Concurrent TGF-β-induced ALK1 signaling mitigates ALK5 responses through Smad1. ALK1 signaling induced by BMP9 also antagonizes TGF-β-induced podosome formation, but this occurs through both Smad1 and Smad5. Whereas ALK1 neutralization brings ALK5 signals to full potency for TGF-β-induced podosome formation, ALK1 depletion leads to cell disturbances not compatible with podosome assembly. Thus, ALK1 possesses passive and active modalities. Altogether, our results reveal specific features of ALK1 and ALK5 signaling with potential clinical implications.  相似文献   

10.
11.
Abstract

Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR‐family proteins consist of VEGFR‐1/Flt‐1, VEGFR‐2/KDR/Flk‐1, and VEGFR‐3/Flt‐4. Among these, VEGFR‐2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1–3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR‐specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR‐2 tyrosine kinase, ZM323881 (5‐[[7‐(benzyloxy) quinazolin‐4‐yl]amino]‐4‐fluoro‐2‐methylphenol), to explore the role of VEGFR‐2 in endothelial cell function. Consistent with its reported effects on VEGFR‐2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR‐2, but not of VEGFR‐1, epidermal growth factor receptor (EGFR), platelet‐derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR‐1 and VEGFR‐2, but not VEGFR‐3, in the absence or presence of ZM323881. Inhibition of VEGFR‐2 blocked activation of extracellular regulated‐kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR‐1‐specific ligand, placental growth factor (PlGF). Inhibition of VEGFR‐2 also perturbed VEGF‐induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor‐2 inhibition also reversed VEGF‐stimulated phosphorylation of CrkII and its Src homology 2 (SH2)‐binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR‐2 thus blocked all VEGF‐induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR‐2 is critical for VEGF signaling and/or that VEGFR‐2 may function in a heterodimer with VEGFR‐1 in human vascular endothelial cells.  相似文献   

12.
ObjectiveTo assess associations between the aqueous humour concentration of interleukin IL-1β, IL-6, IL-8, IL-10 and IL-12p, tumor necrosis factor α (TNF-α) and vascular endothelial growth factor (VEGF) and axial length in eyes with cataract.MethodsThe hospital-based investigation included patients who underwent cataract surgery between March 2014 and April 2014. Using aqueous humour collected at the start of cataract surgery, the interleukins IL-1β, IL-6, IL-8, IL-10 and IL-12p, TNF-α and VEGF were examined using a cytometric bead array. Axial length was determined by partial coherence laser interferometry (IOL Master).ResultsThe study included 33 patients with cataract (33 eyes) with a mean age of 69.2±10.8 years (range:50–87 years) and a mean axial length of 24.7±1.9 mm (range:22.6–31.5 mm). Lower aqueous concentration of VEGF was significantly associated with longer axial length (VEGF concentration (pg/mL) = -5.12 x Axial Length (mm) + 163; correlation coefficient r = -0.41; P<0.001) and more myopic refractive error (VEGF concentration (pg/mL) = 1.27xspherical equivalent (diopters)+44.8; r = 0.383; P = 0.002). The aqueous concentrations of all other substances were not significantly (all P>0.10) associated with axial length or refractive error.ConclusionsHigher intravitreal concentrations of VEGF were measured in eyes with a longer axial length, while the intraocular concentrations of IL-1β, IL-6, IL-8, IL-10, IL-12p and TNF-α were not correlated with axial length. The lower concentration of VEGF in axially elongated eyes may be one of the reasons for the lower prevalence of age-related macular degeneration and diabetic retinopathy in myopic eyes.  相似文献   

13.
14.
Summary 1. The blood–brain barrier (BBB) is formed by brain capillary endothelial cells (ECs). There are various cell types, in particular astrocytes, but also pericytes and neurons, located in close vicinity to the capillary ECs which may influence formation and function of the BBB. Based on this consideration, this paper discusses various aspects of the influence of the surrounding cells on brain capillary ECs with special focus on the role of astrocytes.2. Based on the morphology of the BBB, important aspects of brain EC functions are summarized, such as transport functions and maintenance of low paracellular permeability. Moreover, various facets are discussed with respect to the influence of astrocytes, pericytes, microglia, and neurons on the BBB. Data on the role of glial cells in the ontogenesis of the BBB are presented subsequently. The knowledge on this subject is far from being complete, however, these data imply that the neural/neuronal environment rather than glial cells may be of importance in the maturation of the barrier.3. The role of glial cells in the induction and maintenance of the BBB is discussed under physiological as well as pathological conditions. Although the literature presents manifold evidence for a great variety of effects induced by astroglia, there are also many controversies, which may result from different cellular models and experimental conditions used in the respective studies. Numerous factors secreted by astrocytes have been shown to induce a BBB phenotype. On the molecular level, increased expression of barrier-relevant proteins (e.g., tight junction proteins) is documented in the presence of astrocyte-derived factors, and many studies demonstrate the improvement of physiological parameters, such as increased transendothelial resistance and decreased paracellular permeability, in different in vitro models of the BBB. Moreover, one has to take into account that the interaction of brain ECs and astrocytes is bi-directional, and that the other cell types surrounding the brain microvasculature also contribute to BBB function or dysfunction, respectively.4. In conclusion, it is expected that the present and future research focused on molecular mechanisms and signaling pathways will produce new and exciting insights into the complex network of BBB regulation: the cornerstone is laid.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

15.
In ischemic acute kidney injury, renal blood flow is decreased. We have previously shown that reperfused, transplanted kidneys exhibited ischemic injury to vascular endothelium and that preservation of peritubular capillary endothelial integrity may be critical to recovery from ischemic injury. We hypothesized that bone marrow–derived (BMD) endothelial progenitor cells (EPCs) might play an important role in renal functional recovery after ischemia. We tested this hypothesis in recipients of cadaveric renal allografts before and for 2 weeks after transplantation. We found that the numbers of circulating CD34-positive EPCs and CD146-positive endothelial cells (ECs) decreased immediately after ischemia–reperfusion. In renal allograft tissues obtained 1 hr after reperfusion, CD34-positive cells were more frequently observed along the endothelial lining of peritubular capillaries compared with non-ischemic controls. Moreover, 0–17.5% of peritubular capillary ECs were of recipient origin. In contrast, only 0.1–0.7% of tubule cells were of recipient origin. Repeat graft biopsy samples obtained 35 and 73 days after transplant did not contain capillary ECs of recipient origin, whereas 1.4% and 12.1% of tubule cells, respectively, were of recipient origin. These findings suggest that BMD EPCs and ECs may contribute to endothelial repair immediately after ischemia–reperfusion. (J Histochem Cytochem 58:687–694, 2010)  相似文献   

16.
Thymidine phosphorylase (TP) catalyzes the phosphorolytic cleavage of thymidine (TdR) to thymine and deoxyribose‐1‐phosphate (dR‐1‐P). TP, which is overexpressed in a wide variety of solid tumors, is involved in the activation and inactivation of fluoropyrimidines. We investigated the role of TP in 5′‐deoxy‐5‐fluorouridine (5′DFUR), 5‐fluorouracil (5FU) and trifluorothymidine (TFT) sensitivity. TP had no effect on TFT while it activated 5′DFUR and to a lesser extent 5FU. In order to provide an explanation for this difference in activation of 5′DFUR and 5FU, we studied the role of the 5FU co‐substrate, dR‐1‐P, needed for its activation.  相似文献   

17.
When investigating dynamics of reparative regeneration of the rat aorta endothelium after injuring a considerable area by means of cryogenic lesion, a certain tendency to cluster arrangement of proliferating endothelial cells (EC) has been revealed at the edge of the defect both at the beginning and at the end of the reparative process. This fact together with the data on mechanisms of migration and proliferation of EC makes it possible to suppose certain scheme of the mitotic reaction development in endothelium. It consists of centropetal movement of waves of interdependent acts of contraction and flattening of endotheliocytes. Some characteristics of the regenerative proliferation of endothelium make it possible to formulate a hypothesis on autowave character of its regulation.  相似文献   

18.
19.
Endothelial progenitor cells: identity defined?   总被引:1,自引:0,他引:1  
In the past decade, researchers have gained important insights on the role of bone marrow (BM)-derived cells in adult neovascularization. A subset of BM-derived cells, called endothelial progenitor cells (EPCs), has been of particular interest, as these cells were suggested to home to sites of neovascularization and neoendothelialization and differentiate into endothelial cells (ECs) in situ , a process referred to as postnatal vasculogenesis. Therefore, EPCs were proposed as a potential regenerative tool for treating human vascular disease and a possible target to restrict vessel growth in tumour pathology. However, conflicting results have been reported in the field, and the identification, characterization, and exact role of EPCs in vascular biology is still a subject of much discussion. The focus of this review is on the controversial issues in the field of EPCs which are related to the lack of a unique EPC marker, identification challenges related to the paucity of EPCs in the circulation, and the important phenotypical and functional overlap between EPCs, haematopoietic cells and mature ECs. We also discuss our recent findings on the origin of endothelial outgrowth cells (EOCs), showing that this in vitro defined EC population does not originate from circulating CD133+ cells or CD45+ haematopoietic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号