首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
2.
3.
4.
Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on transmembrane helix (TMH) 2 of subunit c. Previously the reactivity of Cys substituted into TMH2 revealed extensive aqueous access at the cytoplasmic side as probed with Ag+ and other thiolate-directed reagents. The analysis of aqueous accessibility of membrane-embedded regions in subunit c was extended here to TMH1 and the periplasmic side of TMH2. The Ag+ sensitivity of Cys substitutions was more limited on the periplasmic versus cytoplasmic side of TMH2. In TMH1, Ag+ sensitivity was restricted to a pocket of four residues lying directly behind Asp-61. Aqueous accessibility was also probed using Cd2+, a membrane-impermeant soft metal ion with properties similar to Ag+. Cd2+ inhibition was restricted to the I28C substitution in TMH1 and residues surrounding Asp-61 in TMH2. The overall pattern of inhibition, by all of the reagents tested, indicates highest accessibility on the cytoplasmic side of TMH2 and in a pocket of residues around Asp-61, including proximal residues in TMH1. Additionally subunit a was shown to mediate access to this region by the membrane-impermeant probe 2-(trimethylammonium)ethyl methanethiosulfonate. Based upon these results and other information, a pocket of aqueous accessible residues, bordered by the peripheral surface of TMH4 of subunit a, is proposed to extend from the cytoplasmic side of cTMH2 to Asp-61 in the center of the membrane.F1F0 ATP synthase utilizes the energy stored in an H+ or Na+ electrochemical gradient to synthesize ATP in bacteria, mitochondria, and chloroplasts (14). The ATP synthase complex is composed of two sectors, i.e. a water-soluble F1 sector that is bound to a membrane-embedded F0 sector. In bacteria, F1 is composed of five subunits in an α3β3γδϵ ratio and contains three catalytic sites for ATP synthesis and/or hydrolysis centered at the α-β subunit interfaces. F0 is composed of three subunits in an a1b2c10–15 ratio and functions as the ion-conducting pathway (59). Ion translocation through F0 drives rotation of a cylindrical ring of c-subunits that is coupled to rotation of the γ subunit within the (αβ)3 hexamer of F1 to force conformational changes in the three active sites and in turn drive synthesis of ATP by the binding change mechanism (14, 1013).Subunit c of F0 folds in the membrane as a hairpin of two extended α-helices. In Escherichia coli, 10 copies of subunit c pack together to form a decameric ring with TMH12 on the inside and TMH2 on the periphery (6, 14). An atomic resolution structure of the Na+-translocating c11-ring from Ilyobacter tartaricus was recently published by Meier et al. (8). In the c11 structure, the Na+ binding site is formed by two interacting c subunits. The essential Na+-binding Glu residue, which corresponds to Asp-61 in E. coli, is located in TMH2 at the middle of the lipid bilayer. Subunit a consists of five transmembrane helices, four of which likely interact as a four-helix bundle (1518). Subunit a lies on the periphery of the c-ring with TMHs 4 and 5 from subunit a and TMH2 from subunit c forming the a-c interface (1821). During ion translocation through F0, the essential Arg-210 on TMH4 of subunit a is postulated to facilitate the protonation/deprotonation cycle at Asp-61 of subunit c and cause the rotation of the c-ring past the stationary subunit a (3, 4, 19).Chemical modification of cysteine-substituted transmembrane proteins has been widely used as a means of probing the aqueous accessible regions (2224). The reactivity of a substituted cysteine to thiolate-directed probes provides an indication of aqueous accessibility because the reactive thiolate species is preferentially formed in an aqueous environment. The aqueous accessibility of the five TMHs in subunit a of E. coli F0 has been probed using Ag+ and NEM (19, 2527). The results suggest the presence of an aqueous accessible channel in subunit a in the center of TMHs 2–5 extending from the periplasm to the center of the membrane. Protons entering through this periplasmic access channel are postulated to bind to the essential Asp-61 residues of the c-ring and exit to the cytoplasm by a still uncertain pathway at the peripheral face of aTMH4 with protonation/deprotonation of Asp-61 driving c-ring rotation.During H+-driven ATP synthesis, two models for the pathway by which H+ or Na+ exit to the cytoplasm have been proposed. The first model proposes that the ions bound at Asp-61 exit to the cytoplasm via a half-channel composed at least partially by residues in TMH4 of subunit a (2527). Chemical modification studies of Cys-substituted subunit a of E. coli revealed an aqueous accessible surface of TMH4 that includes the essential Arg-210 residue, which extended from the center of the membrane to the cytoplasm, suggesting that the ion exit channel may lie at the a-c interface (19, 25). Alternatively studies of the c-ring from the I. tartaricus enzyme indicate that Na+ can access Glu-65 in the absence of other F0 subunits, suggesting an intrinsic channel in subunit c (28, 29). However, no such channel was apparent in the crystal structure of the c11-ring (8). In a previous study (30), we probed the thiolate reactivity of Cys substitutions in the cytoplasmic half of TMH2 in subunit c. These experiments revealed extensive reactivity to sulfhydryl-directed reagents on the peripheral face of cTMH2, supporting the presence of the cytoplasmic exit channel at the a-c interface. In this study, we extended the survey of aqueous accessibility in transmembrane regions by probing thiolate reactivity of Cys substitutions in TMH1 and in the periplasmic half of TMH2. The reactivity of Cys substituted into these regions proved to be more limited. Only a small region of TMH1, lying directly behind Asp-61, was reactive with Ag+. In addition to Ag+, we used Cd2+ as a complementary, membrane-impermeant probe for aqueous accessibility. The survey of Cd2+ sensitivity confirmed that aqueous accessibility from the cytoplasm is much greater for residues packing at the periphery of the c-ring. The experiments reported here distinguish the aqueous accessible and inaccessible regions of the c-ring and strengthen evidence that the cytoplasmic H+ exit channel is situated at the a-c interface.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Neurofilaments (NFs) are prominent components of large myelinated axons and probably the most abundant of neuronal intermediate filament proteins. Here we show that mice with a null mutation in the mid-sized NF (NF-M) subunit have dramatically decreased levels of light NF (NF-L) and increased levels of heavy NF (NF-H). The calibers of both large and small diameter axons in the central and peripheral nervous systems are diminished. Axons of mutant animals contain fewer neurofilaments and increased numbers of microtubules. Yet the mice lack any overt behavioral phenotype or gross structural defects in the nervous system. These studies suggest that the NF-M subunit is a major regulator of the level of NF-L and that its presence is required to achieve maximal axonal diameter in all size classes of myelinated axons.Neurofilaments (NFs)1 are the most prominent cytoskeletal components in large myelinated axons and probably the most abundant and widely expressed of neuronal intermediate filament (IF) proteins. In mammals, NFs are composed of three proteins termed light (NF-L), mid-sized (NF-M), and heavy (NF-H) NFs. These proteins are encoded by separate genes (17, 21, 27) and have apparent molecular weights of ∼68,000, 150,000, and 200,000, respectively, when separated on SDS-PAGE gels.Like all IFs, NF proteins contain a relatively well-conserved α helical rod domain of ∼310 amino acids with variable NH2-terminal and COOH-terminal regions (33). In NFs, the COOH-terminal domains are greatly extended relative to other IFs and contain a glutamic acid–rich region of unknown significance and in NF-M and NF-H a series of lysine-serine-proline-valine (KSPV) repeats (21, 27) which are major sites of phosphorylation in both proteins. In axons, NFs form bundles of 10-nm diameter “core filaments” with sidearms consisting of phosphorylated COOH-terminal tail sequences of NF-M and NF-H (12, 13, 26, 29) that have been thought to extend and maintain the spacing between filaments (4). Similar sidearm extensions are not found in IFs composed of other IF proteins such as desmin, glial fibrillary acidic protein, or vimentin. In NFs assembled in vitro, all three subunits appear to be incorporated into core filaments (12, 26). Thus, current models of NF assembly suggest that NF-M and NF-H are the major components of sidearm extensions and are anchored to a core of NF-L via their central rod domains.Although much is known about NF structure and assembly, questions remain concerning NF function. A primarily structural role for NFs is suggested by their prominence in large axons (41). Small unmyelinated axons contain few NFs (9) and some small neurons lack morphologically identifiable NFs (3, 32, 38). Most dendrites contain few NFs and only in dendrites of large neurons such as motor neurons are NFs numerous (41).A role for NFs as a major determinant of axonal diameter has long been suspected from the correlation between NF content in axonal cross sections and axonal caliber (16). This correlation persists during axonal degeneration and regeneration (14) and changes in NF transport correlate temporally with alterations in the caliber of axons in regenerating nerves (15). Additionally, fewer NFs occur at nodes of Ranvier where axonal diameter is reduced (1), and certain NF epitopes are found only in regions where maximal axonal caliber has developed (6).Several animal models have supported a role for NFs in establishing axonal diameter. One is a Japanese quail (Quiverer) with a spontaneous mutation in NF-L that generates a truncated protein incapable of forming NFs (31). Homozygous mutants contain no axonal NFs and exhibit a mild generalized quivering. In these animals, radial growth of myelinated axons is severely attenuated (44) with a consequent reduction in axonal conduction velocity (37). In transgenic mice, Eyer and Petersen (8) expressed an NF-H/β-galactosidase fusion protein in which the COOH terminus of NF-H was replaced by β-galactosidase. NF inclusions were found in the perikarya of neurons and the resulting NF aggregates blocked all NF transport into axons resulting in axons with reduced calibers. More recently, Zhu et al. (45) have shown that mice lacking NFs due to a targeted disruption of the NF-L gene have diminished axonal calibers and delayed maturation of regenerating myelinated axons.Although these models clearly suggest a role for NFs in establishing axonal diameter, they contribute only limited information concerning the roles of the individual NF subunits. During development, NF-L and NF-M are coexpressed initially whereas NF-H appears later (4). Studies in transgenic mice have found that overexpressing mouse NF-L leads to an increased density of NFs, but no increase in axonal caliber (25). More recently, Xu et al. (43) overexpressed each of the mouse NF subunits either individually or in various combinations. They found that only when NF-L was overexpressed in combination with either NF-M or NF-H was axonal growth significantly increased. Interestingly, when NF-M and NF-H were overexpressed alone or in combination with one another, radial axonal growth was inhibited.It also remains incompletely understood how NF stoichiometries are regulated and the degree to which any one NF subunit is dominant in this regulation. Recently, conflicting data has appeared concerning the role of NF-M in regulating NF stoichiometries. We found that overexpression of human NF-M in transgenic mice increases the levels of endogenous mouse NF-L protein and decreases the extent of phosphorylation of NF-H (39). These results imply that NF-M may play a dominant role in regulating the levels of NF-L protein, the relative stoichiometry of NF subunits, and the phosphorylation status of NF-H. However different results were obtained by Wong et al. (40) who found that overexpression of mouse NF-M in transgenic mice did not effect the levels of axonal NF-L, and although it reduced NF-H, it did not effect its phosphorylation status.To further address these issues we generated mice bearing a null mutation in the mouse NF-M gene. Here we describe the effects of this mutation on nervous system development with particular reference to the role of the NF-M subunit in specifying axonal diameter and its effect on levels of the remaining NF subunits.  相似文献   

17.
Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer''s disease, and autism spectrum disorder—neurological disorders that exhibit elevated mTORC1 activity. Through a protein–protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson''s disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states.The mechanistic/mammalian target of rapamycin complex 1 (mTORC1)1 is a serine/threonine protein kinase that is highly expressed in many cell types (1). In the brain, mTORC1 tightly coordinates different synaptic plasticities — long-term potentiation (LTP) and long-term depression (LTD) — the molecular correlates of learning and memory (25). Because mTORC1 is at the core of many synaptic signaling pathways downstream of glutamate and neurotrophin receptors, many hypothesize that dysregulated mTORC1 signaling underlies cognitive deficits observed in several neurodegenerative diseases (3, 617). For example, mTORC1 and its downstream targets are hyperactive in human brains diagnosed with Alzheimer''s disease (AD) (1820). Additionally in animal models of autism spectrum disorder (ASD), altered mTORC1 signaling contributes to the observed synaptic dysfunction and aberrant network connectivity (13, 15, 2127). Furthermore, epilepsy, which is common in AD and ASD, has enhanced mTORC1 activity (2832).Phosphorylation of mTORC1, considered the active form, is generally regarded to promote protein synthesis (33). Thus, many theorize that diseases with overactive mTORC1 arise from excessive protein synthesis (14). Emerging data, however, show that suppressing mTORC1 activation can trigger local translation in neurons (34, 35). Pharmacological antagonism of N-methyl-d-aspartate (NMDA) receptors, a subtype of glutamate receptors that lies upstream of mTOR activation, promotes the synthesis of the voltage-gated potassium channel, Kv1.1, in dendrites (34, 35). Consistent with these results, in models of temporal lobe epilepsy there is a reduction in the expression of voltage-gated ion channels including Kv1.1 (30, 31, 36). Interestingly in a model of focal neocortical epilepsy, overexpression of Kv1.1 blocked seizure activity (37). Because both active and inactive mTORC1 permit protein synthesis, we sought to determine the proteins whose expression is altered when mTORC1 phosphorylation is reduced in vivo.Rapamycin is an FDA-approved, immunosuppressive drug that inhibits mTORC1 activity (38). We capitalized on the ability of rapamycin to reduce mTORC1 activity in vivo and the unbiased approach of mass spectrometry to identify changes in protein expression. Herein, we provide evidence that mTORC1 activation bidirectionally regulates protein expression, especially in the PSD where roughly an equal distribution of proteins dynamically appear and disappear. Remarkably, using protein–protein interaction networks facilitated the novel discovery that PARK7, a protein thus far only implicated in Parkinson''s disease, (1) is up-regulated by increased mTORC1 activity, (2) resides in the PSD only when mTORC1 is active, and (3) is aberrantly expressed in a rodent model of TSC, an mTORC1-related disease that has symptoms of epilepsy and autism. Collectively, these data provide the first comprehensive list of proteins whose abundance or subcellular distributions are altered with acute changes in mTORC1 activity in vivo.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号