首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Rhodococcus rhodochrous NCIMB 13064 can dehalogenate and utilise a number of halogenated aliphatic compounds as sole carbon and energy source. Mutants of NCIMB13064 can be easily isolated with an enlarged range of 1-chloroalkane utilising ability. Dehalogenation of 1-chlorononane, 1-chlorodecane and short-chain 1-chloroalkanes (C3-C8) is encoded by the same plasmid pRTL1. However, a different genetic element(s) is required for the dehalogenation of 3-chloropropionic acid. Two derivatives (P200 and P400) of R. rhodochrous NCIMB 13064 were isolated which had acquired the ability to utilise naphthalene as sole carbon and energy source. Both strains lost the ability to utilise short-chain 1-chloroalkanes and underwent some rearrangements associated with pRTLl plasmid.  相似文献   

2.
A component of the acetone-soluble lipids of Nocordia rhodochrous grown on glycerol, was purified by column chromatography on silicic acid and characterized by infrared, nuclear magnetic resonance spectroscopy, optical rotation measurement and product identification after alkaline hydrolysis. Glycerol was the sole water-soluble component and nocardomycolic acids with chain lengths ranging from C40 to C44 were the constituent fatty acids identified. On the basis of the evidence obtained, the substance isolated from N. rhodochrous is identified as a mixture of mononocardomycoloylglycerols in which nocardomycolic acids are bound to one of the primary hydroxyl groups of the glycerol molecule.  相似文献   

3.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC high performance liquid chromatography - DEAE diethyl amino ethyl - IEF isoelectrofocusing - NTG nitrosoguanidine - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - pI isoelectric point  相似文献   

4.
The mycolic acid compositions of Nocardia rubra and related bacteria grown in media containing different concentrations of antituberculous isonicotinic acid hydrazide (INH) were determined in detail by gas chromatography-mass spectrometry. On the basis of molecular species composition, average carbon numbers of mycolic acids were calculated. In Nocardia rubra, N. lutea and Rhodococcus rhodochrous IFO-13161, the ratio of mycolic to non-mycolic fatty acids and the average carbon numbers of mycolic acids were decreased at the INH concentrations of higher than 1 g/ml, paralleling with the significant inhibition of growth. In above three species the synthesis of longer chain mycolic acids (longer than C44 or C46) was inhibited more significantly than shorter homologues such as C38 or C40. In contrast, neither growth inhibition nor change in corynomycolic acid composition was observed in Corynebacteria xerosis and Rhodococcus rhodochrous IFO-13165 at the concentration region of INH up to 100 g/ml. The direct mass fragmentographic analysis of the trimethylsilylated (TMS) derivatives of mycolic acid methyl esters, monitoring [M-15] ions of individual molecular species, revealed that the chain shortening of total mycolic acid molecule by INH occurred more greatly in more highly unsaturated subclasses than in less unsaturated subclasses. Furthermore, mass fragmentographic analysis, monitoring fragment ions (A) and (B), due to straight chain and branched chain alkyl units, respectively, demonstrated the inhibition of mycolic acids was not attributed to the shortening of -alkyl chain, but to the inhibition of chain elongation of C28 to C32 straight chain meromycolic acids. It was also indicated the amounts of trehalose mono- and di-mycolate (cord factor) decreased significantly with the addition of INH (1 to 20 g/ml) in the above strains. From the results obtained above, INH appeared to inhibit the synthesis of mycolic acids longer than C44 or C46 specifically by inhibiting chain elongation or desaturation of precursor long chain fatty acids longer than C28 or C30.  相似文献   

5.
The cyp125 gene of Rhodococcus jostii RHA1 was previously found to be highly upregulated during growth on cholesterol and the orthologue in Mycobacterium tuberculosis (rv3545c) has been implicated in pathogenesis. Here we show that cyp125 is essential for R. jostii RHA1 to grow on 3‐hydroxysterols such as cholesterol, but not on 3‐oxo sterol derivatives, and that CYP125 performs an obligate first step in cholesterol degradation. The involvement of cyp125 in sterol side‐chain degradation was confirmed by disrupting the homologous gene in Rhodococcus rhodochrous RG32, a strain that selectively degrades the cholesterol side‐chain. The RG32Ωcyp125 mutant failed to transform the side‐chain of cholesterol, but degraded that of 5‐cholestene‐26‐oic acid‐3β‐ol, a cholesterol catabolite. Spectral analysis revealed that while purified ferric CYP125RHA1 was < 10% in the low‐spin state, cholesterol (KDapp = 0.20 ± 0.08 μM), 5α‐cholestanol (KDapp = 0.15 ± 0.03 μM) and 4‐cholestene‐3‐one (KDapp = 0.20 ± 0.03 μM) further reduced the low spin character of the haem iron consistent with substrate binding. Our data indicate that CYP125 is involved in steroid C26‐carboxylic acid formation, catalysing the oxidation of C26 either to the corresponding carboxylic acid or to an intermediate state.  相似文献   

6.
Based on a CSD search, a meta‐analysis of 1179 structures of 19 natural amino acids H3NCαH(R)C′(O)O and their derivatives H3NCαH(R)C′(O)O(H/R/M), protonated, esterified, or coordinated at the carboxylic group, shows that the chirality chain with its two steps, established in the preceding paper for alanine, can be extended to natural amino acids. High diastereoselectivities are observed in the induction from the L configuration at Cα to the ?ψ and +ψ conformations, which in turn distort the planar carboxylic group CαC′(Ocis)Otrans to asymmetric flat tetrahedra, showing that the chirality chain is an integral part of natural amino acids.  相似文献   

7.
The utilization of 1-alkenes by Corynebacterium simplex ATCC 6946 was studied with respect to the characteristic fatty acid profiles resulting from the growth at the expense of these substrates.

It was indicated that the synthetic pathways of the cellular fatty acids in Corynebact. simplex grown on various n-alkanes or 1-alkenes changed markedly according to the chain lengths of the substrates. From shorter chain hydrocarbons (C12, C14) the fatty acids were found to be synthesized mainly via de novo synthesis pathway in a similar manner to those from glucose, while chain elongation and intact incorporation occurred to a very small extent. On the other hand, an intact incorporation mechanism was preferential in the cells grown on longer ones (C16, C18). When n-pentadecane or 1-pentadecene was used as the substrate, these three mechanisms seemed to operate simultaneously.  相似文献   

8.
Summary Pseudomonas C12B (NCIMB 11753) is able to utilize a broad range of alkyl sulfates. The growth on n-alkanes of different chain lenght (C6–C16) was tested. Pseudomonas C12B assimilated hydrocarbons from C9–C16. Growth rate on n-decane (1%) that was chosen as the typical sole source of carbon and energy depended on oxygen supply. The addition of surfactants (Triton X-100 and Tween-80) in a nontoxic concentrations resulted in increased biomass yield. Under optimal growth conditions Pseudomonas C12B exhibited the maximal growth rate and yield with C11 as the sole carbon source.  相似文献   

9.
Rhodococcus opacus 1CP, a potent degrader of (chloro-) aromatic compounds was found to utilise C10–C16 n-alkanes as sole carbon sources. Highest conversion rates were observed with n-tetradecane and n-hexadecane, whereas the utilisation of n-dodecane and n-decane was considerably slower. Thin-layer chromatography of organic extracts of n-alkane-grown 1CP cultures indicated the growth-associated formation of a glycolipid which was characterised as a trehalose dimycolate by 1H-NMR spectroscopy and mass spectrometry. Total chain lengths between 48 and 54 carbons classify the fatty acid residues as nocardiomycolic acids. The presence of two double bonds in each mycolic acid is another feature that distinguishes the corresponding trehalose dinocardiomycolates from trehalose dicorynomycolates reported for Rhodococcus erythropolis DSM43215 and Rhodococcus ruber IEGM231. R. opacus 1CP was not found, even under nitrogen limitation, to produce anionic trehalose tetraesters which have previously been reported for R. erythropolis DSM43215.  相似文献   

10.
Liu BK  Wang N  Wu Q  Xie CY  Lin XF 《Biotechnology letters》2005,27(10):717-720
Lipase-catalyzed synthesis of potential multifunctional ribavirin derivatives was performed in acetone. Divinyl dicarboxylates with different chain lengths (C4, C6, C9, C10) were used as acyl donors and the reactions were catalyzed by lipase immobilized on acrylic resin from Candida antarctica (CAL-B). Ribavirin was regioselectivly acylated at the primary hydroxyl groups and the corresponding vinyl esters (C4, C6, C9, C10) were prepared in respective yields of 48%, 65%, 54%, 55%.  相似文献   

11.
12.
Summary We sought the optimum conditions for production of nitrile hydratase by Rhodococcus rhodochrous J1. The addiiion of both cobalt ions and an aliphatic nitrile or amide as an inducer was indispensable for the appearance of nitrile hydratase activity in R. rhodochrous J1 cells. Crotonamide was an efficient inducer and, moreover, urea was found to be the most powerful inducer for the production of nitrile hydratase. When R. rhodochrous J1 was cultivated under optimal conditions, the enzyme activity in the culture broth and the specific activity was approximately 32,000 and 512 times higher than the initially obtained levels, respectively. The nitrile hydratase formed corresponded to more than 45% of the total soluble protein in urea-induced cells, as judged by quantitative evaluation of the gel track.Offprint requests to: T. Nagasawa  相似文献   

13.
Abstract: Hydrocarbons associated with the developing microspores in the anther loculus of Tulipa cv. Apeldoorn were investigated. They occurred mainly at chain lengths between C19 and C29. At the lower chain lengths the n-alkanes, at higher chain lengths the alkenes dominated. During microspore development the ratio of unsaturated to saturated hydrocarbons in the extracts changed. While the content of all main hydrocarbons increased, the content of the alkanes C19, C21 and C23 increased to 3.8, 3.4 and 3.3 times the initial value compared to 2.1, 2.0 and 2.2 times in case of the alkenes C25, C27 and C29. Surface lipids from petals, leaves and ripe pollen were analyzed in comparison and these analyses confirmed that a high amount of alkenes was unique for microspores. Iso-heptacosane was the main hydrocarbon from ripe pollen, heptacosene was a main component when microspore extracts were analyzed.  相似文献   

14.
As the third-generation biocatalyst for industrial production of acrylamide, the superiority of Rhodococcus rhodochrous J1 nitrile hydratase was demonstrated in comparison with other acrylamide-producing bacteria. R. rhodochrous J1 enzyme is much more heat stable and more tolerant to a high concentration of acrylonitrile than Pseudomonas chlororaphis B23 and Brevibacterium R312 enzymes. The J1 enzyme is peculiar in its extremely high tolerance to acrylamide. The hydration reaction of acrylonitrile catalysed by J1 cells proceeded even in the presence of 50% (w/v) acrylamide. The tolerance of J1 enzyme to various organic solvents such as n-propanol and isopropanol was prominent. Using R. rhodochrous J1 resting cells, the accumulation reaction was carried out by feeding acrylonitrile to maintain a level of 6%. After 10 h incubation, the accumulation of acrylamide was approximately 65.6% (w/v) at 10°C, 56.7% (w/v) at 15°C, and 56.0 (w/v) at 20°C. The high stability, high catalytic efficiency and other outstanding features of the J1 enzyme are analysed and discussed. Correspondence to: T. Nagasawa  相似文献   

15.
The sphingolipid backbone ceramide (Cer) is a major component of lipid lamellae in the stratum corneum of epidermis and has a pivotal role in epidermal barrier formation. Unlike Cers in other tissues, Cers in epidermis contain extremely long fatty acids (FAs). Decreases in epidermal Cer levels, as well as changes in their FA chain lengths, cause several cutaneous disorders. However, the molecular mechanisms that produce such extremely long Cers and determine their chain lengths are poorly understood. We generated mice deficient in the Elovl1 gene, which encodes the FA elongase responsible for producing C20 to C28 FAs. Elovl1 knockout mice died shortly after birth due to epidermal barrier defects. The lipid lamellae in the stratum corneum were largely diminished in these mice. In the epidermis of the Elovl1-null mice, the levels of Cers with ≥C26 FAs were decreased, while those of Cers with ≤C24 FAs were increased. In contrast, the levels of C24 sphingomyelin were reduced, accompanied by an increase in C20 sphingomyelin levels. Two ceramide synthases, CerS2 and CerS3, expressed in an epidermal layer-specific manner, regulate Elovl1 to produce acyl coenzyme As with different chain lengths. Elovl1 is a key determinant of epidermal Cer chain length and is essential for permeability barrier formation.  相似文献   

16.
The crystal structures of alkyl 2-deoxy-α-d-arabino-hexopyranosides, with the alkyl chain lengths from C8 to C18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P212121, whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P21. The sugar moieties retained a 4C1 chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated. The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-α-d-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.  相似文献   

17.
The ability to O-methylate chlorinated phenols and phenol derivatives in the genus Rhodococcus was studied. Several species and strains O-methylated chlorophenols to the corresponding anisoles, namely R. equi, R. erythropolis, R. rhodochrous, and Rhodococcus sp. strains P1 and An 117. The ability for a strain to O-methylate chlorophenols did not require that it had been isolated from an environment containing a chlorinated aromatic compound. O-methylation activity was stimulated by the presence of carbohydrate. All strains preferentially O-methylated a substrate with the hydroxyl group flanked by two chlorine substitunts.  相似文献   

18.
A multivalent ligand system was constructed by coimmobilization of two kinds of peptide ligands, enkephalin and neurotensin derivatives having a dioctadecyl group, on dimyristoylphosphatidylcholine (DMPC) liposomes. The enkephalin derivatives are Tyr-D -Ala-Gly-Trp-Leu- (Sar-Sar-Pro)n-[N(C18H37)2] (Enk3nD, n=0, 1, 2), where a dioctadecyl group was connected to the C-terminal side of enkephalin directly or through a hydrophilic and flexible spacer chain of different lengths. The neurotensin derivatives are Ac-Glu[N(C18H37)2]-(Sar-Sar-Pro)n-Arg-Arg-Pro-Tyr-Ile-Leu-OH (D3nNT, n=0, 1, 2, 3). The derivatives were spontaneously immobilized on DMPC liposomes by overnight incubation. The receptor affinity of the enkephalin derivatives became significantly higher upon immobilization on liposomes. The highest affinity was obtained for the δ receptor by Enk6D immobilized on DMPC liposomes. This affinity is higher than that of enkephalinamide. Neurotensin derivatives coimmobilized with large amounts of Enk3D on DMPC liposomes show higher affinity than the neurotensin derivatives immobilized alone. The effect of Enk3D on the receptor affinity of the coimmobilized neurotensin derivative disappeared by the addition of [Ala2, MePhe4, Gly-ol5]enkephalin (DAGO). Therefore, the receptor affinity of a peptide hormone is altered by immobilization on DMPC liposomes and by coimmobilization with other peptide hormones. It was confirmed by fluorescent microscopy that the multivalent ligand system binds to receptors without release of the bound ligands from DMPC liposomes.  相似文献   

19.
Phodococcus erythropolis Y2 produced two types of dehalogenase: a hydrolytic enzyme, that is an halidohydrolase, which was induced by C3 to C6 1-haloalkane substrates, and at least one oxygenase-type dehalogenase induced by C7 to C16 1-haloalkanes andn-alkanes. The oxygenase-type activity dehalogenated C4 to C18 1-chloroalkanes with an optimum activity towards 1-chlorotetradecane. The halidohydrolase catalysed the dehalogenation of a wide range of 1- and ,-disubstituted haloalkanes and ,-substituted haloalcohols. In resting cell suspensions of hexadecane-grownR. erythropolis Y2 the oxygenase-type dehalogenase had a specific activity of 12.9 mU (mg protein)–1 towards 1-chlorotetradecane (3.67 mU mg–1 towards 1-chlorobutane) whereas the halidohydrolase in 1-chlorobutane-grown batch cultures had a specific activity of 44 mU (mg protein)–1 towards 1-chlorobutane.The significance of the two dehalogenase systems in a single bacterial strain is discussed in terms of their contribution to the overall catabolic potential of the organism.  相似文献   

20.
Four kinds of polychlorinated biphenyl (PCB)-degrading Rhodococcus sp. (TA421, TA431, HA99, and K37) have been isolated from termite ecosystem and under alkaline condition. The bph gene cluster involved in the degradation of PCB/biphenyl has been analyzed in strain TA421. This gene cluster was highly homologous to bph gene clusters in R. globerulus P6 and Rhodococcus sp. RHA1. In this study, we cloned and analyzed the bph gene cluster essential to PCB/biphenyl degradation from R. rhodochrous K37. The order of the genes and the sequence were different in K37 than in P6, RHA1, and TA421. The bphC8 K37 gene was more homologous to the meta-cleavage enzyme involved in phenanthrene metabolism than bphC genes involved in biphenyl metabolism. Two other Rhodococcus strains (HA99 and TA431) had PCB/biphenyl degradation gene clusters similar to that in K37. These findings suggest that these bph gene clusters evolved separately from the well-known bph gene clusters of PCB/biphenyl degraders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号