首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study, to characterize TCDD action during luteal phase of the ovarian cycle, the direct effect of TCDD was investigated in vitro using a system of monolayer cell culture. Luteal cells isolated from mid-developing corpora lutea were cultured with four different doses of TCDD (0.1, 1.0, 10.0 and 100 nM). The dose of 0.1nM TCDD had no effect on progesterone (P4) secretion by luteal cells while the doses of 10nM and 100nM in the same, statistically significant manner decreased P4 secretion (p <0.05). The inhibitory effect of TCDD was dependent not only on doses by also on experimental conditions. In cells treated every day for 72 hrs of culture with 0.1nM TCDD, P4 secretion was 71% of basal secretion. 100nM TCDD added only at the beginning of the culture and nor repeated when medium was changed every 24 hrs decreased P4 secretion to 81.8% of basal secretion. The most inhibitory effect was observed in experiments in which 100nM TCDD was added at the beginning of the culture and medium was not changed for 72 hrs. Secretion of P4 was only 33.9% of that by control cultures. In order to show the time-dependent response to TCDD in terms of P4 secretion, luteal cells were cultured for 24,48, 72 hrs with 0.1 and 100nM TCDD. 85%, 75% and 72% of basal progesterone secretion was noted after 24, 48 and 72h respectively in 0.1nM TCDD-treated cells. In 100nM TCDD treated cells the decrease of progesterone secretion was 57%, 67% and 82% of basal secretion after 24, 48 and 72 hrs of culture. These experiments suggest that TCDD by suppressing progesterone secretion by corpora lutea can cause adverse reproductive effects such as early pregnancy failure. Endocrine disrupters that interfere with progesterone production can act as abortifacients.  相似文献   

2.
Toxicity from 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure results in severe metabolic imbalances leading to a loss of fat stores in many animal species, a phenomenon known as the wasting syndrome. In this paper, we report that TCDD treatment at very low doses (0.03-1 micrograms/kg, single intraperitoneal injection) causes a profound reduction of glucose uptake by guinea pig adipose tissue, pancreas and brain. This effect of TCDD is dose-dependent, with a dose as small as 0.03 micrograms/kg resulting in a significant decrease. In adipose tissue, the decrease begins within 6 h of treatment and persists at least 28 days. The Vmax of glucose transport was decreased by TCDD treatment, whereas the Km was unchanged. Liver behaves oppositely to adipose tissue. At early stages of treatment (6-12 h) glucose uptake was depressed, while at later stages (24-96 h) it was increased. In situ (explant tissue culture) treatment with TCDD yields similar trends as in vivo studies for glucose uptake in all three tissues. In adipose tissue culture TCDD starts reducing glucose uptake after 30 minutes. The inhibitory potencies of three dioxin congeners on adipose glucose transporting activities follows the same order of their toxicities in vivo. TCDD's effect on glucose transport is sensitive to cytochalasin B, a specific inhibitor of glucose transporter proteins. Based on these observations and the importance of glucose transporters to cellular energy maintenance, we conclude that at least in guinea pigs the reduction of glucose transporters in various tissues is one of the major causes for TCDD-induced wasting syndrome, which is so prominent in this species.  相似文献   

3.
Pineal hormone melatonin is an important regulator of endocrine and circadian rhythms in vertebrates. Since liver is assumed to be the major organ in the metabolism of this indole hormone, we investigated the effect of the known Ah-receptor agonist, 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on melatonin metabolism in fish hepatocytes as well as the in vitro effect of melatonin on trout hepatic microsomal cytochrome P4501A (CYP1A) catalyst. Primary cell cultures of rainbow trout hepatocytes were exposed to [3H]melatonin (1 nM to 1 microM) alone and in combination with TCDD (50 pM) at 15 degrees C for 24 or 48 h. Analysis of melatonin and its metabolites in the culture medium and hepatocytes by HPLC revealed that about 96% of the added [3H]melatonin was metabolised after 24 h in both control and TCDD treated cultures. 3H-radioactivity was found mainly in the culture medium and less than 5% of the total 3H-radioactivity retained inside hepatocytes. Of the HPLC separated metabolites, one coeluted with 6-hydroxymelatonin and one unknown metabolite eluted after 6-hydroxymelatonin. In addition, two other metabolites were more water-soluble than 6-hydroxymelatonin and were considered to be conjugated products. Treatment of the hepatocytes with TCDD increased the amount of the major oxidated product, 6-hydroxymelatonin, about 2.5-fold after 24 h and 1.2-fold after 48 h exposure, respectively when compared with the control cultures. Whereas the amount of the unknown metabolite eluting after 6-hydroxymelatonin decreased about 1.3-fold after 24 h and 1.2-fold after 48 h exposure, respectively. Melatonin alone did not affect P4501A associated EROD-activity or CYP1AmRNA levels in the primary hepatocyte cultures. TCDD-treatment increased EROD-activity 3 to 5-fold and respective CYP1AmRNA content 6 to 14-fold, when compared with the control or melatonin-treated cultures. Furthermore, melatonin competitively inhibited EROD-activity in liver microsomes with a Ki value of 62.06+/-3.78 microM. The results show that TCDD alters metabolic degradation of melatonin in hepatocytes and suggest that P4501A may be an important P450 isoenzyme involved in oxidative metabolism of melatonin in fish liver.  相似文献   

4.
BACKGROUND: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing cleft palate (CP). TCDD exposure disrupts expression of epidermal growth factor (EGF) receptor, EGF, and transforming growth factor-alpha (TGFalpha) in the palate and affects proliferation and differentiation of medial epithelial cells. EGF knockout embryos are less susceptible to the induction of CP by TCDD. This study used palate organ culture to examine the hypothesis that EGF enables a response to TCDD. METHODS: The midfacial tissues from wild-type (WT), EGF knockout, C57BL/6J, and TGFalpha knockout embryos were placed in organ culture on gestational day (GD) 12. Palatal explants were cultured for 4 days in serum-free Bigger's (BGJ) medium with 0.1% dimethyl sulfoxide (DMSO) or 1 x 10(-8) M TCDD with or without 2 ng of EGF/ml, 1 or 2 ng of TGFalpha/ml. Effects on palatal fusion were evaluated on day 4 of culture. EGF levels in explants and medium were determined using Luminex technology. RESULTS: In serum-free, control medium, palates from all of the strains fused. EGF knockout palates cultured with TCDD (no EGF) fused, but those cultured with TCDD + 2 ng of EGF/ml failed to fuse (p < 0.05 vs. control or TCDD without EGF). TGFalpha knockout palates failed to fuse when cultured with TCDD + 2 ng of TGFalpha/ml. EGF levels increased in tissue and accumulated in the medium after 24 hr of culture. CONCLUSIONS: This study demonstrated that providing EGF to the palates of EGF knockout mice restored the response to TCDD. These studies support the hypothesis that the mechanism for induction of CP by TCDD is mediated via the EGFR pathway.  相似文献   

5.
Effect of ethanol on lipid metabolism in cultured hepatocytes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Isolated rat hepatocytes were cultured in a modified HI-WO/BA medium for 16 h. In the following 24 h oleate or oleate plus ethanol was added to the medium. After this period the medium was changed again and the cultures were further incubated with [1-14C]oleate alone or with [1-14C]oleate plus ethanol for 6 h. This allowed a comparison of effects of short-term (6 h) and long-term (24 + 6 h) exposure to ethanol on fatty acid metabolism. The increased intracellular accumulation of triacylglycerol in the presence of ethanol was quantitatively accounted for by increased fatty acid uptake, by decreased fatty acid oxidation in the tricarboxylic acid cycle and by decreased VLDL (very-low-density lipoprotein)-triacylglycerol secretion. Ketone-body production was not affected. After short-term exposure the rate of accumulation of triacylglycerol was increased by 50%. This increase was accounted for by increased fatty acid uptake (44%), decreased tricarboxylic acid-cycle activity (49%) and decreased VLDL-triacylglycerol secretion (7%). After long-term exposure, the rate of accumulation of triacylglycerol was increased by 74%. This increase was accounted for by increased fatty acid uptake (34%), decreased tricarboxylic acid-cycle activity (34%) and decreased VLDL-triacylglycerol secretion (32%). The larger increase in accumulation of triacylglycerol after long-term exposure to ethanol was entirely accounted for by increased inhibition of secretion of VLDL-triacylglycerol. The biochemical mechanisms underlying the observations are discussed.  相似文献   

6.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent immunosuppressant in several animal species. The purpose of this study was to determine if TCDD affected the activity of adenosine deaminase (ADA), a purine metabolizing enzyme that is vital to the proper functioning of the immune system. The effect of TCDD on ADA ctivity was studied in various tissues of male Balb/c mice (a TCDD-responsive strain) and DBA/2 mice (a less-responsive strain). Of the tissues examined after administration of TCDD in vivo (115 μ/kg, i.p.), ADA activity was found to be significantly reduced in thymic and splenic tissues of Balb/c mice at 24 hours postadministration. The enzyme activity in these affected tissues remained consistently low through 10 days postadministration. Such an effect of TCDD was both dose and time related in the thymic tissue of Balb/c mice. In contrast, no appreciable alterations in ADA activity were evident in any of the tissues of DBA/2 mice at any of the sampling intervals, indicating that such an effect of TCDD is likely to be mediated through the Ah receptor. This in vivo effect of TCDD on thymic ADA activity was also reproducible in situ where isolated whole thymuses were directly incubated with 10 nM TCDD. In this model, TCDD's effects on ADA activity were antagonized by known protein kinase or phosphorylation inhibitors such as quercetin, genistein, tyrphostin, and neomycin. These results indicate that the effect of TCDD on ADA activity in the thymus may be related to its property to elevate protein kinase activities in this tissue. ADA activity was also reduced in 3T3 cells that were treated with 10 nM TCDD in a low (1%) serum media. In contrast, 25 ng/mL epidermal growth factor (EGF) under such conditions consistently stimulated ADA activity. Interestingly, EGF at a similar concentration failed to elicit a stimulatory effect on ADA activity when cells were pretreated with TCDD. The property of TCDD to lower ADA activity under in vivo, in situ, as well as in vitro conditions appears to be largely related to its action to modulate protein phosphorylation activities.  相似文献   

7.
Lim JM  Rocha A  Hansel W 《Theriogenology》1996,45(6):1081-1089
The objective of this study was to develop a serum-free medium for the co-culture of bovine embryos that would yield a percentage of blastocysts equal to that obtained with fetal bovine serum (FBS)-supplemented medium. Cumulus cell-enclosed oocytes (CEO) matured and inseminated in vitro were cultured in a tissue culture medium (TCM)-199 or in a serum-free medium (bovine embryo culture medium; BECM) until 240 h post insemination. Replacement of 10% (v/v) FBS with either 3 mg crystallized bovine serum albumin (BSA)/ml or 3 mg fatty acid-free BSA/ml in TCM-199 had no effect (P > 0.14) on embryo development to the >or= 2-cell (51 to 60%), >or= 8-cell (24 to 33%), blastocyst (16 to 19%) and hatched-blastocyst (7 to 10%) stages at 48, 96, 192 and 240 h post insemination, respectively. Oocyte-enclosing cumulus cells in BSA-supplemented medium grew in clusters rather than in layers, as was noted in FBS-supplemented medium. When CEO were cultured in fatty acid-free BSA-supplemented media (TCM-199 and BECM), a significantly (P < 0.001) higher percentage of oocytes developed to blastocysts after culture with (22%) or without (18%) a cumulus cell monolayer than after denuding the oocytes (7%). Glucose in concentrations of 0 to 5.56 mM added for periods of 18 and 120 h post-insemination had neither a stimulatory nor a deleterious effect on preimplantation development. In conclusion, a serum-free medium supplemented with BSA can be successfully used in a cumulus cell co-culture system for bovine embryos.  相似文献   

8.
9.
Wasting syndrome is one of the hallmark symptoms of poisoning by TCDD (=dioxin), which is associated with the massive loss of adipose tissue and serum hyperlipidemia in vivo. Yet, the most widely used in vitro cell model 3T3-L1 adipocyte has not been useful for studying such an action of TCDD because of the difficulty of inducing their mature adipocytes to respond to TCDD to go through lipolysis. Here, we made efforts to find the right cell culture and treatment conditions to induce mature 3T3-L1 adipocytes to go through lipolysis, which is defined as events leading to reduction of lipids in adipocytes. The optimum condition was found to require 7-day differentiated adipocytes being subjected to DMEM medium containing TCDD (but without insulin) for 5 day incubation with two medium changes (the same composition) on incubation days 2 and 4. After 24 h, the early effect of TCDD on adipocytes was predominantly on inflammation, particularly induction of COX-2 and KC (IL-8), which is accompanied by upregulation of C/EBPbeta and delta. The sign of TCDD-induced lipolysis starts slowly and by incubation day 3, a few markers showed modestly significant changes. By day 5 of incubation, however, many markers show highly significant signs of lipolytic changes. Although this process could take place without exogenous macrophages or their cytokines, addition of exogenous TNFalpha considerably synergized this action of TCDD. In conclusion, under a right condition, 3T3-L1 adipocytes were found to respond to TCDD to go through lipolysis. The early trigger of such a response appears to be activation of COX-2, which is amplified by TNFalpha.  相似文献   

10.
The potent toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing hydronephrosis and cleft palate. Because of the long half-life of TCDD, the urinary tract is exposed throughout development after a single dose on gestation day (GD) 10 or earlier. TCDD-induced hydronephrosis is a consequence of occlusion of the ureter by epithelial cells. Since embryonic growth factors and the epidermal growth factor (EGF) receptor are probably involved in regulation of embryonic cell proliferation, this study examines the effects of TCDD on expression of EGF receptors and proliferation of ureteric epithelial cells in vivo and in culture. After exposure to TCDD by gavage (12, 24, or 30 micrograms/kg on GD 10; 6 or 24 micrograms/kg on GD 12) the mean cell depth of the ureteric and bladder epithelia was increased. EGF receptors were detected immunohistochemically in sectioned urinary tracts. The expression of receptors decreased with advancing development in control ureteric epithelia. However, after TCDD exposure the level of EGF receptors failed to decline. The incorporation of 3H-TdR was observed in sections by autoradiography, and after exposure to TCDD more epithelial cells showed incorporation than was apparent in controls. Transmission electron microscopy (TEM) of embryonic ureters from fetuses exposed to TCDD in vivo showed no cytotoxicity in basal cells and the cells remained undifferentiated, as in controls. Ureters taken from GD 12 embryos and cultured with 1 x 10(-10)M TCDD showed ureteric epithelial hyperplasia without cytotoxicity, but at 1 x 10(-8)M TCDD evidence of cytotoxicity was observed by TEM. The levels of TCDD found in fetuses after in vivo exposure (204-307 pg/fetus, with 1-2 pg in the urinary tract) compare well with the in vitro level (32 pg/ml), which was most effective in producing hyperplasia of the epithelial cells. The present study correlates a TCDD-induced increase in cell depth with altered regulation of EGF receptors and excessive proliferation, both in vivo and in cultured embryonic ureters.  相似文献   

11.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was administered to 2-4-week-old mice (5, 25, and 50 micrograms/kg body wt.) and to in vitro cultures (10(-9) M) of fetal thymi. By monitoring thymocyte populations with respect to the differentiation antigens CD4 and CD8, it was found that the cell number in all thymocyte populations except for CD8+ decreased significantly compared with controls. In vivo the most marked decrease occurred among double negative (DN) and double positive (DP) cells, whereas in vitro, the DP cells were most severely affected. The cell number had already decreased to some extent by day 1 after a dose of 50 micrograms/kg body wt. of TCDD, although a severe reduction did not become apparent until day 4. There was a clear dose/response relationship between 5 and 50 micrograms/kg body wt. Autoradiography and liquid scintillation counting studies showed that incorporation of [3H]thymidine in the thymus had already decreased 24 h after TCDD treatment, with the decrease being even more pronounced at 48 h. By 96 h, the rate of cell proliferation had returned to approximately normal values. The results show that TCDD has a long-lasting effect on thymocyte abundance together with a transient effect on cell proliferation. This indicates that in addition to the initial effects of TCDD on cell proliferation, it may also more permanently disturb the normal process of elimination by means of selection.  相似文献   

12.
The highly toxic, polychlorinated aromatic compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) occurs as a contaminant throughout the environment. Epidemiology studies of populations accidentally exposed to TCDD have failed to identify TCDD as a human teratogen, but these studies are limited by the small numbers of exposed pregnancies and imprecise estimates of exposure. TCDD is highly teratogenic in mice, inducing cleft palate and hydronephrosis. TCDD exposure in vivo of embryonic mice alters the differentiation and expression of growth factors in the medial epithelial palatal cells. These alterations also occur in rat and mouse palates exposed to TCDD in organ culture. In the present study, human embryonic palatal shelves were cultured in the rodent organ culture system. In order to achieve in vitro the developmental stage at which fusion would normally occur, GD 52 shelves were cultured for 4 days, GD 53 shelves were cultured for 3 days, and GD 54 shelves were cultured for 3 days. Three of four palatal shelves exposed to 5 x 10(-11) M TCDD were identical to their homologous controls (right shelf cultured with control medium; left shelf cultured with TCDD-containing medium). TCDD at 1 x 10(-7) M produced cytotoxicity detected by transmission electron microscopy (TEM). Exposure to 1 x 10(-8) M TCDD resulted in continued incorporation of thymidine ([3H]-TdR detected autoradiographically) by palatal medial cells, failure of the medial peridermal cells to degenerate as observed by scanning electron microscopy (SEM), and differentiation into a stratified, squamous epithelium. These alterations are identical to those induced by TCDD in vitro in rat and mouse palatal cells. The main difference between these species is the level of TCDD required to elicit the responses. Cultured mouse palates respond to 5 x 10(-11) M TCDD with altered medial cell differentiation, and 1 x 10(-10) M TCDD is cytotoxic. The rat shelves respond with altered differentiation at 1 x 10(-8) M and cytotoxicity at 1 x 10(-7) M. All the human shelves respond at 1 x 10(-8) M TCDD with altered differentiation, 1 out of 4 responded at 5 x 10(-11) M, and cytotoxicity occurred at 1 x 10(-7) M. The present data suggest human embryonic palates are less sensitive than those of the C57BL/6N mouse, and that exposure to high levels of TCDD would be required to elicit altered differentiation in the palatal shelf.  相似文献   

13.
Prostaglandin F2alpha secretion by the uterine endometrium between Days 13 and 14 postovulation causes luteal regression in mares. A mechanism involving interruption or suppression of this secretion causes pregnancy to be maintained. The present study was designed to determine the age of the conceptus when maximal suppression of PGF2alpha secretion occurs. Mares were examined daily during estrus with ultrasonography (day 0 = day of ovulation). Conceptus tissues were recovered nonsurgically on Days 9 (n = 7), 12 (n = 5), 13 (n = 5), and 16 (n = 7) and uterine biopsies on Day 14. Both uterine and conceptus tissues were washed in phosphate-buffered saline (PBS) with 100 units penicillin G/ml + 100 microg streptomycin/ml, pH 7.4. Endometrial tissue (approximately 200 mg) plus conceptus tissues were incubated in 15 ml of tissue culture medium 199 (M199) + 10% fetal calf serum and 10 units penicillin G/ml and 10 microg streptomycin/ml at 37 degrees C under 5% CO(2): 5% O(2) : 90% N(2). Samples were taken at 4, 8, and 24 h. Two plates that contained only endometrial tissue and two additional plates with 25 mg flunixin meglumine added along with endometrial tissue were also included in the incubations. Concentrations of PGF2alpha were measured in all samples using radioimmunoassay. There was a trend toward suppression of PGF2alpha secretion by conceptus tissues, regardless of age. However, Day 12 concepti significantly suppressed PGF2alpha secretion compared with that of endometrial tissue incubated alone (P = 0.03).  相似文献   

14.
An acutely toxic dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a drastically and permanently reduced feed intake and wasting by an unknown mechanism. We focused on the possible interference of TCDD with hypothalamic factors known to take part in the regulation of eating and metabolism, utilizing the over 1000-fold TCDD-sensitivity difference between Long-Evans (Turku/AB; L-E) and Han/Wistar (Kuopio) rats. The mRNA expression of 18 hypothalamic factors (including NPY, AgRP, and CART) was measured by quantitative RT-PCR at 6, 24 and 96 h after TCDD administration. The effects of TCDD were compared with those of leptin and with feed restriction employing a TCDD dose that elicited a severe reduction of feed intake in L-E rats. TCDD mainly modified expression of orexigenic factors causing an initial suppression followed by reversal to enhanced expression by 96 h. The latter was also seen in feed-restricted controls. In contrast, leptin altered both orexigenic and anorexigenic factor mRNAs in a more even manner and its effects were clustered at 6 h. The transient nature of feeding-promoting factor suppression does not strongly support a key role for this phenomenon in TCDD-induced wasting syndrome. However, the fact that TCDD mainly affected orexigenic factors and the temporal differences in response found between the rat strains warrant further research.  相似文献   

15.
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) administered to young male guinea pigs at a dose of 1 microgram/kg (single intraperitoneal injection) caused a large reduction in adipose tissue lipoprotein lipase (LPL) activity. This effect occurred rapidly; a 70% decrease was noticed after 24 hour and 80% of LPL activity was lost by 48 hours when the serum triglyceride levels increased to 175% of control levels. LPL is known to play an important role in controlling the amount of free fatty acids supplied to adipose tissues. Administration of a large dose of glucose to fasted guinea pigs, which have shown a similar weight loss, but less LPL loss than TCDD-treated animals, had the effect of elevating their adipose LPL levels back to a near normal level, whereas the same treatment caused no significant increase in the LPL levels of TCDD-treated animals. Evidence indicates that the TCDD-caused decline in LPL activity is irreversible. As a consequence, the affected guinea pigs are incapable of responding to changes in nutritional status.  相似文献   

16.
Phencyclidine (PCP) is a non-competitive NMDA glutamate receptor antagonist that induces psychotomimetic effects in humans and experimental animals. Chronic PCP exposure elicits signs of persistently altered frontal brain activity and related behaviors which are also seen in patients with schizophrenia. Secretogranin II (sg II) belongs to the chromogranin family of proteins that exist in large dense core vesicles in nervous tissue. In the brain, 90% of sg II is processed to the small peptide secretoneurin. We previously detected differential effects of single-dose and subchronic PCP administration on sg II expression in the rat prefrontal cortex (PFC). In the present study, we applied PCP to organotypic PFC slices. PCP application for 28 h induced decreased tissue and culture medium secretoneurin content. In contrast, incubation with the adenylate cyclase activator forskolin caused significantly increased secretoneurin levels after 8 h. PCP for 4 h followed by 24 h without PCP resulted in increased culture medium secretoneurin content but no change in tissue levels. sg II mRNA expression was decreased after 28 h PCP application in cortical neurons. Immunohistochemical and TUNEL staining profiles indicated that the alterations were not due to neurodegeneration. PCP for 5 days changed neither the secretoneurin tissue or culture medium levels, nor the sg II mRNA expression. These results demonstrate that PCP modulates sg II expression in PFC tissue in the absence of afferent inputs and that the nature of these changes is dependent upon the duration of exposure to and/or withdrawal from PCP.  相似文献   

17.
Lipid peroxidation as a possible cause of TCDD toxicity   总被引:2,自引:0,他引:2  
The target tissues of TCDD, the dysfunctions that result in death in experimental animals, and the ultimate biochemical lesion(s) caused by TCDD are not known despite numerous studies. We have shown by the thiobarbituric acid and conjugated diene methods that TCDD induces hepatic lipid peroxidation in rats. The lipid peroxidation produced by TCDD is both dose and time dependent. A 5-6 fold increase in lipid peroxidation occurs within 6 days following the administration of 40 micrograms TCDD/kg body weight/day for 3 days. Thus, the toxicity of TCDD may be caused in part by free radical-mediated lipid peroxidation that leads to general cell membrane damage which can ultimately produce death in experimental animals at acutely toxic doses.  相似文献   

18.
The influence of down-regulation of protein kinase C on glucose-induced insulin secretion was studied. A 22-24 h exposure of mouse pancreatic islets to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 0.16 microM) in RPMI 1640 culture medium (8.3 mM-glucose, 0.43 mM-Ca2+) abolished TPA (0.16 microM)-induced insulin secretion and led to a potentiation of phase 1 and a decrease in phase 2 of glucose-induced insulin secretion. Thus, although the total insulin release during 40 min of perfusion with glucose (16.7 mM) (45-85 min) was unaffected, the percentage released during phase 1 (45-55 min) was increased from 12.9 +/- 1.5 (4)% in controls to 35.8 +/- 3.9 (4)% in TPA-treated islets (P less than 0.01), and the percentage released during phase 2 (65-85 min) was decreased from 63.2 +/- 3.9 (4)% to 35.3 +/- 1.4 (4)% (P less than 0.005). In contrast, TPA exposure in TCM 199 medium (5.5 mM-glucose, 1.26 mM-Ca2+) caused a total abolition of both phases 1 and 2 of glucose-induced secretion. However, inclusion of the alpha 2-adrenergic agonists adrenaline (10 microM) or clonidine (10 microM), or lowering of the Ca2+ concentration in TCM 199 during down-regulation, preserved and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1 and inhibited phase 2 of carbamoylcholine (100 microM)-induced insulin secretion at 3.3 mM-glucose, and abolished the potentiating effect of carbamoylcholine (100 microM) at 16.7 mM-glucose. These results substantiate a role for protein kinase C in insulin secretion, and suggest that protein kinase C inhibits phase 1 and stimulates phase 2 of both glucose-induced and carbamoylcholine-induced insulin secretion.  相似文献   

19.
A high prevalence of germinomas has been observed in certain populations of Mya arenaria from eastern Maine. The etiology of these tumors is unknown. We are investigating the hypothesis that exposure to environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contributes to gonadal carcinogenesis. Clams were exposed to TCDD with or without the initiating compound diethylnitrosamine (DEN) in an attempt to induce germinomas. A TCDD-dependent alteration in gametogenesis was observed in which 32.5+/-6.5% of individuals exhibited undifferentiated gonads. Analyses of AhR and p53 expression were carried out to identify similarities between naturally occurring neoplastic and TCDD (+/-DEN)-altered reproductive tissues. Neoplastic tissues had significantly less p53 protein than matched controls, whereas TCDD-induced undifferentiated samples exhibited no difference in p53 protein levels compared to controls. No gender-specific differences were observed in AhR mRNA, but there were significant differences in protein levels. AhR was undetectable in male gonadal tissue whereas females exhibited a significant positive relationship between AhR protein levels and stage of ovogenesis. Despite exhibiting some morphological similarity, we conclude the TCDD-induced pathology is not a germinoma. We further suggest the change in reproductive tissue is due to inhibition of cell differentiation and/or development by an AhR-independent mechanism.  相似文献   

20.
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on lipid peroxidation, 3H-Me-glucose (3H-Me-glu), and 14C-dehydroascorbic acid (14C-DHA) uptakes were studied in adipose tissue of male guinea pig. Under in vitro test conditions, using isolated adipose tissue in a culture medium (explant culture), TCDD reduced the uptake of 3H-Me-glu and 14C-DHA in a dose- and time-dependent fashion. The IC50 values of TCDD's action were 0.04 and 2 nM on 14C-DHA and 3H-Me-glu uptakes, respectively. TCDD (10 nM) also suppressed glucose transporting activity within 15 minutes in explant-cultured adipocytes. Cytochalasin B (CB) and nonlabeled D-glucose inhibited 14C-DHA uptake also in a dose-dependent manner. In addition, TCDD was found to induce lipid peroxidation in ex-plant-cultured adipose tissue. This effect of TCDD was similar to that of a typical lipid peroxidation inducer, CCl4, and it was dose and time dependent. TCDD caused a statistically significant rise in lipid peroxidation at a concentration as low as 0.1 nM after 60 minutes of treatment in explant culture. Unexpectedly, the Ah receptor partial antagonists, 4,7-phenanthroline and α-naphthoflavone, did not fully antagonize TCDD-induced lipid peroxidation in explant-cultured adipocytes. In vivo treatment of TCDD also induced lipid peroxidation. Among seven organs of male guinea pig tested, the levels of lipid peroxidation in adipose tissue and in liver increased at 1 and 40 days following a single i.p. dose of TCDD (1 μg/kg). The results of an in vivo time-course study indicated that such an effect of TCDD was most pronounced after 40 days of treatment. Finally, we have tested the protective role of some antioxidants on TCDD-induced lipid peroxidation under explant-culture conditions. The results indicated that DHA, but not ascorbic acid, could completely abolish TCDD-induced lipid peroxidation. The protective effect of DHA on TCDD-induced lipid peroxidation was stronger than that of α-tocopherol and uric acid, and this effect was blocked by CB. We conclude from these studies that TCDD acts in this guinea pig tissue through two different routes: one is the Ah receptor-dependent route causing the reduction of the level of glucose transporters and subsequent decrease of cellular uptake of DHA and the other, the Ah receptor-independent route causing the overall lipid peroxidation. Nevertheless, it appears likely that both events are antagonized by DHA. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 269–278, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号