首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallographic structures of 4-chlorocatechol 1,2-dioxygenase (4-CCD) complexes with 3,5-dichlorocatechol, protocatechuate (3,4-dihydroxybenzoate), hydroxyquinol (benzen-1,2,4-triol) and pyrogallol (benzen-1,2,3-triol), which act as substrates or inhibitors of the enzyme, have been determined and analyzed. 4-CCD from the Gram-positive bacterium Rhodococcus opacus 1CP is a Fe(III) ion containing enzyme specialized in the aerobic biodegradation of chlorocatechols.The structures of the 4-CCD complexes show that the catechols bind the catalytic iron ion in a bidentate mode displacing Tyr169 and the benzoate ion (found in the native enzyme structure) from the metal coordination sphere, as found in other adducts of intradiol dioxygenases with substrates. The analysis of the present structures allowed to identify the residues selectively involved in recognition of the diverse substrates.Furthermore the structural comparison with the corresponding complexes of catechol 1,2-dioxygenase from the same Rhodococcus strain (Rho-1,2-CTD) highlights significant differences in the binding of the tested catechols to the active site of the enzyme, particularly in the orientation of the aromatic ring substituents. As an example the 3-substituted catechols are bound with the substituent oriented towards the external part of the 4-CCD active site cavity, whereas in the Rho-1,2-CTD complexes the 3-substituents were placed in the internal position. The present crystallographic study shed light on the mechanism that allows substrate recognition inside this class of high specific enzymes involved in the biodegradation of recalcitrant pollutants.  相似文献   

2.
The isofunctional enzymes of catechol 1,2-dioxygenase from species of Acinetobacter, Pseudomonas, Nocardia, Alcaligenes, and Corynebacterium oxidize 3-methylcatechol according to both the intradiol and extradiol cleavage patterns. However, the enzyme preparations from Brevibacterium and Arthrobacter have only the intradiol cleavage activity. Comparison of substrate specificity among these isofunctional dioxygenases shows striking differences in the oxidation of 3-methylcatechol, 4-methylcatechol and pyrogallol.  相似文献   

3.
Chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is a dioxygenase responsible for ring cleavage during the degradation of recalcitrant aromatic compounds. We determined the zero-field splitting of the Fe(III) cofactor (|D| = 1.3 +/- 0.2 cm(-1)) by electron paramagnetic resonance (EPR) experiments that along with other structural data allowed us to infer the Fe(III) coordination environment. The EPR spectrum of the ion shows a significantly decrease of the g = 4.3 resonance upon substrate binding. This result is rationalized in terms of a mechanism previously proposed, where catechol substrate is activated by Fe(III), yielding an exchange-coupled Fe(II)-semiquinone (pair). The Pp 1,2-CCD capacity of binding amphipatic molecules and the effects of such binding on protein activity are also investigated. EPR spectra of spin labels show a protein-bound component, which was characterized by means of spectral simulations. Our results indicate that Pp 1,2-CCD is able to bind amphipatic molecules in a channel with the headgroup pointing outwards into the solvent, whereas the carbon chain is held inside the tunnel. Protein assays show that the enzyme activity is significantly lowered in the presence of stearic-acid molecules. The role of the binding of those molecules as an enzyme activity modulator is discussed.  相似文献   

4.
This study aimed to characterization of catechol 1,2-dioxygenase from a Gram-negative bacterium, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. Strain designated as N6, was isolated from the activated sludge samples of a sewage treatment plant at Bentwood Furniture Factory Jasienica, Poland. Morphology, physio-biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicate that strain belongs to Pseudomonas putida. When cells of strain N6 grown on protocatechuate or 4-hydroxybenzoic acid mainly protocatechuate 3,4-dioxygenase was induced. The activity of catechol 1,2-dioxygenase was rather small. The cells grown on benzoic acid, catechol or phenol showed high activity of only catechol 1,2-dioxygenase. This enzyme was optimally active at 35 °C and pH 7.4. Kinetic studies showed that the value of Km and Vmax was 85.19 ??M and 14.54 ??M min−1 respectively. Nucleotide sequence of gene encoding catechol 1,2-dioxygenase in strain N6 has 100% identity with catA genes from two P. putida strains. The deduced 301-residue sequence of enzyme corresponds to a protein of molecular mass 33.1 kDa. The deduced molecular structure of the catechol 1,2-dioxygenase from P. putida N6 was very similar and characteristic for the other intradiol dioxygenases.  相似文献   

5.
Streptomyces sp. SirexAA-E is a highly cellulolytic bacterium isolated from an insect/microbe symbiotic community. When grown on lignin-containing biomass, it secretes SACTE_2871, an aromatic ring dioxygenase domain fused to a family 5/12 carbohydrate-binding module (CBM 5/12). Here we present structural and catalytic studies of this novel fusion enzyme, thus providing insight into its function. The dioxygenase domain has the core β-sandwich fold typical of this enzyme family but lacks a dimerization domain observed in other intradiol dioxygenases. Consequently, the x-ray structure shows that the enzyme is monomeric and the Fe(III)-containing active site is exposed to solvent in a shallow depression on a planar surface. Purified SACTE_2871 catalyzes the O2-dependent intradiol cleavage of catechyl compounds from lignin biosynthetic pathways, but not their methylated derivatives. Binding studies show that SACTE_2871 binds synthetic lignin polymers and chitin through the interactions of the CBM 5/12 domain, representing a new binding specificity for this fold-family. Based on its unique structural features and functional properties, we propose that SACTE_2871 contributes to the invasive nature of the insect/microbial community by destroying precursors needed by the plant for de novo lignin biosynthesis as part of its natural wounding response.  相似文献   

6.
Dioxygenases that catalyze the cleavage of the aromatic ring are classified into two groups according to their mode of ring fission. Substrates of ring-cleavage dioxygenases usually contain hydroxyl groups on adjacent aromatic carbons, and intradiol enzymes cleave the ring between these two hydroxyl groups. Extradiol enzymes in contrast cleave the ring between one hydroxylated carbon and its adjacent nonhydroxylated carbon. In this study, we determined the complete nucleotide sequence of nahC, the structural gene for 1,2-dihydroxynaphthalene dioxygenase encoded in the NAH7 plasmid of Pseudomonas putida. This enzyme is an extradiol ring-cleavage enzyme that cleaves the first ring of 1,2-dihydroxynaphthalene. The amino acid sequence of the dioxygenase deduced from the DNA sequence demonstrated that the molecular weight of the enzyme is 33,882. This result was in agreement with those of maxicell analyses that showed that the nahC product was a 36-kDa protein. Interestingly, the amino acid sequence of 1,2-dihydroxynaphthalene dioxygenase was 50% homologous with that of 2,3-dihydroxybiphenyl dioxygenase, which catalyzes extradiol cleavage of the first ring of 2,3-dihydroxybiphenyl (Furukawa, K., Arimura, N., and Miyazaki, T. (1987) J. Bacteriol. 169, 427-429). The amino acid sequence similarity of 1,2-dihydroxynaphthalene dioxygenase with catechol 2,3-dioxygenase, which is an authentic extradiol dioxygenase, was rather low (16%). However, a statistical analysis by the method of S. B. Needleman and C. D. Wunsch [1970) J. Mol. Biol. 48, 443-453) clearly showed that these two dioxygenases are evolutionarily related. Therefore, these extradiol enzymes are considered as products of the same gene superfamily. From the significant sequence similarity between intradiol enzymes, it has been shown (Neidle, E. L., Harnett, C., Bonitz, S., and Ornston, L. N. (1988) J. Bacteriol. 170, 4874-4880) that intradiol enzymes evolved from a common ancestor. Comparison of the amino acid sequence of extradiol enzymes with those of intradiol dioxygenases did not show any significant global or localized similarity.  相似文献   

7.
BACKGROUND: Intradiol dioxygenases catalyze the critical ring-cleavage step in the conversion of catecholate derivatives to citric acid cycle intermediates. Catechol 1,2-dioxygenases (1, 2-CTDs) have a rudimentary design structure - a homodimer with one catalytic non-heme ferric ion per monomer, that is (alphaFe(3+))(2). This is in contrast to the archetypical intradiol dioxygenase protocatechuate 3,4-dioxygenase (3,4-PCD), which forms more diverse oligomers, such as (alphabetaFe(3+))(2-12). RESULTS: The crystal structure of 1,2-CTD from Acinetobacter sp. ADP1 (Ac 1,2-CTD) was solved by single isomorphous replacement and refined to 2.0 A resolution. The structures of the enzyme complexed with catechol and 4-methylcatechol were also determined at resolutions of 1.9 A and 1.8 A, respectively. While the characteristics of the iron ligands are similar, Ac 1,2-CTD differs from 3,4-PCDs in that only one subunit is used to fashion each active-site cavity. In addition, a novel 'helical zipper', consisting of five N-terminal helices from each subunit, forms the molecular dimer axis. Two phospholipids were unexpectedly found to bind within an 8 x 35 A hydrophobic tunnel along this axis. CONCLUSIONS: The helical zipper domain of Ac 1, 2-CTD has no equivalent in other proteins of known structure. Sequence analysis suggests the domain is a common motif in all members of the 1,2-CTD family. Complexes with catechol and 4-methylcatechol are the highest resolution complex structures to date of an intradiol dioxygenase. Furthermore, they confirm several observations seen in 3,4-PCDs, including ligand displacement upon binding exogenous ligands. The structures presented here are the first of a new family of intradiol dioxygenases.  相似文献   

8.
《FEBS letters》1997,407(1):69-72
Hydroxyquinol 1,2-dioxygenase, an intradiol dioxygenase, which catalyzes the cleaving of the aromatic ring of hydroxyquinol, a key intermediate of 2,4-D and 2,4,5-T degradation, was purified from Nocardioides simplex 3E cells grown on 2,4-D as the sole carbon source. This enzyme exhibits a highly restricted substrate specificity and is able to cleave hydroxyquinol (Km for hydroxyquinol as a substrate was 1.2 μM, Vmax 55 U/mg, Kcat 57 s−1 and Kcat/Km 47.5 μM s−1), 6-chloro- and 5-chlorohydroxyquinol. Different substituted catechols and hydroquinones are not substrates for this enzyme. This enzyme appears to be a dimer with two identical 37-kDa subunits. Protein and iron analyses indicate an iron stoichiometry of 1 iron/65 kDa homodimer, α2 Fe. Both the electronic absorption spectrum which shows a broad absorption band with a maximum at 450 nm and the electron paramagnetic resonance spectra are consistent with a high-spin iron(III) ion in a rhombic environment typical of the active site of intradiol cleaving enzymes.  相似文献   

9.
ABSTRACT

Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.  相似文献   

10.
Two catechol 1,2-dioxygenase (C1,2O) isozymes (IsoA and IsoB) have been purified to homogeneity from a strain of Acinetobacter radioresistens grown on benzoate as the sole carbon and energy source. IsoA and IsoB are both homodimers composed of a single type of subunit with molecular mass of 38,600 and 37,700, Da respectively. In conditions of low ionic strength, IsoA can aggregate as a trimer, in contrast to IsoB, which maintains the dimeric structure, as also supported by the kinetic parameters (Hill numbers). IsoA is identical to the enzyme previously purified from the same bacterium grown on phenol, whereas the IsoB is selectively expressed using benzoate as carbon source. This is the first evidence of the presence of differently expressed C1,2O isozymes in A. radioresistens or more generally of multiple C1,2O isozymes in benzoate-grown Acinetobacter cells. Purified IsoA and IsoB contain approximately 1 iron(III) ion per subunit and both show electronic absorbance and EPR features typical of Fe(III) intradiol dioxygenases. The kinetic properties of the two enzymes such as the specificities toward substituted catechols, the main catalytic parameters, and their behavior in the presence of different kind of inhibitors are, unexpectedly, very similar, in contrast to most of the previously known dioxygenase isozymes.  相似文献   

11.
Catechol 1,2-dioxygenase (C12O) was purified to electrophoretic homogeneity from Acinetobacter sp. DS002. The pure enzyme appears to be a homodimer with a molecular mass of 66 kDa. The apparent Km and Vmax for intradiol cleavage of catechol were 1.58 μM and 2 units per mg of protein respectively. Unlike other C12Os reported in the literature, the catechol 1,2-dioxygenase of Acinetobacter showed neither intradiol nor extradiol cleavage activity when substituted catechols were used as substrates. However, it has shown mild intradiol cleavage activity when benzenetriol was used as substrate. As determined by two dimensional electrophoresis (2DE) followed MALDI-TOF/TOF analyses and gel permeation chromatography, no isoforms of C12O was observed in Acinetobacter sp. DS002. Further, the C12O was seen only in cultures grown in benzoate and it was completely absent in succinate grown cultures. Based on the sequence information obtained from MS/MS data, degenerate primers were designed to amplify catA gene from the genomic DNA of Acinetobacter sp. DS002. The sequence of the PCR amplicon and deduced amino acid sequence showed 97% similarity with a catA gene of Acinetobacter baumannii AYE (YP_001713609).  相似文献   

12.
The DNA sequence of a 1.6-kilobase-pair SalI-KpnI Acinetobacter calcoaceticus restriction fragment carrying catA, the structural gene for catechol 1,2-dioxygenase I, was determined. The 933-nucleotide gene encodes a protein product with a deduced molecular weight of 34,351. The similarly sized Pseudomonas clcA gene encodes catechol 1,2-dioxygenase II, an enzyme with relatively broad substrate specificity and relatively low catalytic efficiency. Comparison of the catA and clcA sequences demonstrated their common ancestry and suggested that acquisitions of direct and inverted sequence repetitions of 6 to 10 base pairs were frequent events in their evolutionary divergence. The catechol 1,2-dioxygenases proved to be evolutionarily homologous with the alpha and beta subunits of Pseudomonas protocatechuate 3,4-dioxygenase, and analysis of conserved residues in the intradiol dioxygenases revealed conserved histidyl and tyrosyl residues that are probably involved in the ligation of ferric ion in their active sites.  相似文献   

13.
邻苯二酚是芳香族化合物多条生物降解途径中共有的一种重要的中间产物,根据开环方式的不同,可分为邻位降解途径和间位降解途径,其中邻位降解途径中的关键酶是邻苯二酚1,2-双加氧酶。本文主要综述了邻苯二酚1,2-双加氧酶的结构、酶学性质,以及它在芳香烃降解菌中存在的同工酶现象及其功能研究进展。  相似文献   

14.
The objective was to understand the roles of multiple catechol dioxygenases in the type strain Sphingobium scionense WP01T (Liang and Lloyd-Jones in Int J Syst Evol Microbiol 60:413–416, 2010a) that was isolated from severely contaminated sawmill soil. The dioxygenases were identified by sequencing, examined by determining the substrate specificities of the recombinant enzymes, and by quantifying gene expression following exposure to model priority pollutants. Catechol dioxygenase genes encoding an extradiol xylE and two intradiol dioxygenases catA and clcA that are highly similar to sequences described in other sphingomonads are described in S. scionense WP01T. The distinct substrate specificities determined for the recombinant enzymes confirm the annotated gene functions and suggest different catabolic roles for each enzyme. The role of the three enzymes was evaluated by analysis of enzyme activity in crude cell extracts from cells grown on meta-toluate, benzoate, biphenyl, naphthalene and phenanthrene which revealed the co-induction of each enzyme by different substrates. This was corroborated by quantifying gene expression when cells were induced by biphenyl, naphthalene and pentachlorophenol. It is concluded that the ClcA and XylE enzymes are recruited in pathways that are involved in the degradation of chlorinated aromatic compounds such as pentachlorophenol, the XylE and ClcA enzymes will also play a role in degradation pathways that produce alkylcatechols, while the three enzymes ClcA, XylE and CatA will be simultaneously involved in pathways that generate catechol as a degradation pathway intermediate.  相似文献   

15.
In various bacterial strains belonging to the β-subdivision of proteobacteria which are capable of degrading chlorinated monoaromatic compounds, chlorocatechol 1,2-dioxygenase genes were detected by PCR and Southern hybridization. Using PCR primers derived from the conserved sequence motifs of chlorocatechol 1,2-dioxygenase genes tfdC, clcA and tcbC, PCR products of the expected size were obtained with the test strains, but not with negative control strains. The specificity of the PCR products was verified by hybridization using an oligonucleotide probe for an internal sequence motif which is evolutionarily conserved among chlorocatechol 1,2-dioxygenases and some other dioxygenases that catalyze the intradiol aromatic-ring-cleavage. Hybridization with the tfdC PCR product from the 2,4-D degradative plasmid pJP4 under stringent conditions revealed different extents of homology of the chlorocatechol 1,2-dioxygenase genes to the canonical tfdC sequence in the various strains. These findings were confirmed by the nucleotide sequence analysis of the tfdC-specific PCR products. From our results, we conclude that the PCR primer set is more suitable than the hybridization with pJP4-derived gene probes for the detection of diverse chlorocatechol 1,2-dioxygenase genes in proteobacteria.  相似文献   

16.
BACKGROUND: Catechol dioxygenases catalyze the ring cleavage of catechol and its derivatives in either an intradiol or extradiol manner. These enzymes have a key role in the degradation of aromatic molecules in the environment by soil bacteria. Catechol 2, 3-dioxygenase catalyzes the incorporation of dioxygen into catechol and the extradiol ring cleavage to form 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase (metapyrocatechase, MPC) from Pseudomonas putida mt-2 was the first extradiol dioxygenase to be obtained in a pure form and has been studied extensively. The lack of an MPC structure has hampered the understanding of the general mechanism of extradiol dioxygenases. RESULTS: The three-dimensional structure of MPC has been determined at 2.8 A resolution by the multiple isomorphous replacement method. The enzyme is a homotetramer with each subunit folded into two similar domains. The structure of the MPC subunit resembles that of 2,3-dihydroxybiphenyl 1,2-dioxygenase, although there is low amino acid sequence identity between these enzymes. The active-site structure reveals a distorted tetrahedral Fe(II) site with three endogenous ligands (His153, His214 and Glu265), and an additional molecule that is most probably acetone. CONCLUSIONS: The present structure of MPC, combined with those of two 2,3-dihydroxybiphenyl 1,2-dioxygenases, reveals a conserved core region of the active site comprising three Fe(II) ligands (His153, His214 and Glu265), one tyrosine (Tyr255) and two histidine (His199 and His246) residues. The results suggest that extradiol dioxygenases employ a common mechanism to recognize the catechol ring moiety of various substrates and to activate dioxygen. One of the conserved histidine residues (His199) seems to have important roles in the catalytic cycle.  相似文献   

17.
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.  相似文献   

18.
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.  相似文献   

19.
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

20.
R. Gregory  D. Recktenwald  B. Hess 《BBA》1981,635(2):284-294
In common with the F1-ATPase from other sources, yeast mitochondrial F1-ATPase was inhibited by 4-chloro-7-nitrobenzofurazan. Total inhibition of the F1-ATPase activity was compatible with the modification of a single tyrosine residue per F1-ATPase molecule. Radioactive labelling experiments localized this modification on a β-subunit. The inactive modified enzyme retained the capacity to bind the photoaffinity label 8-azido-1,N6-etheno-ATP, which has previously been shown to bind nucleotide sites of low affinity. As well, the inactive modified enzyme bound MgATP with high affinity, yielding a Kd of 14 μM. The results are consistent with the hypothesis of alternating, or cooperative, site catalysis by F1-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号