首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (Kcat) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5‐fold increased specific activity (15°C) and over 100 times prolonged half‐life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity‐altering amino acid substitutions were from non‐charged to non‐charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions. Biotechnol. Bioeng. 2013; 110: 711–720. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Protein engineering of subtilisin   总被引:10,自引:0,他引:10  
The serine protease subtilisin is an important industrial enzyme as well as a model for understanding the enormous rate enhancements affected by enzymes. For these reasons along with the timely cloning of the gene, ease of expression and purification and availability of atomic resolution structures, subtilisin became a model system for protein engineering studies in the 1980s. Fifteen years later, mutations in well over 50% of the 275 amino acids of subtilisin have been reported in the scientific literature. Most subtilisin engineering has involved catalytic amino acids, substrate binding regions and stabilizing mutations. Stability has been the property of subtilisin which has been most amenable to enhancement, yet perhaps least understood. This review will give a brief overview of the subtilisin engineering field, critically review what has been learned about subtilisin stability from protein engineering experiments and conclude with some speculation about the prospects for future subtilisin engineering.  相似文献   

5.
6.
7.
Bacillus licheniformis (DSM 641) was cultivated on complex medium in batch and fed-batch operations in a 20-l working volume stirred tank reactor. The medium composition (maltose, glucose, sucrose, fructose, ammonia, phosphate) and O2 and CO2 in the off-gas were monitored on-line; pH, pO2, turbidity, culture fluorescence were monitored in situ; optical density, concentrations of sugars, amino acids, phosphate, proteins, DNA, protease activity and total solids content were monitored off-line. Problems of on-line sampling, cell concentration monitoring, and culture fluorescence measurements and the influence of medium components on the enzyme productivity are discussed. Close relationships between variations of pH, pO2, O2 transfer rate and CO2 production rate on the one hand and cell mass and fluorescence intensity on the other were demonstrated in batch and in fed-batch cultures. Using suitable cultivation conditions, alkaline protease with high volume activity [15300 units (U)/ml] and specific activity (510 U/mg) was produced. By replacing the complex medium with a semisynthetic one, the volumetric activity was reduced by a factor of ten (to 1650 U/ml), but the specific productivity by a factor of only two (to 210 U/ml). Correspondence to: K. Schügerl  相似文献   

8.
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). A series of mono-, di- and triacidic acid methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutant (CMM) enzymes were determined at pH 8.6 under conditions which ensured complete ionization of the unnatural amino acid side-chains introduced. The presence of up to three negative charges in the S1, S1' and S2 subsites of SBL resulted in up to 11-fold lowered activity, possibly due to interference with oxyanion stabilization of the transition state of the hydrolytic reactions catalyzed. Each unit increase in negative charge resulted in a raising of K(M) and a reduction of k(cat). However, no upper limit was observed for increases in K(M), whereas decreases in k(cat) reached a limiting value. Comparison with sterically similar but uncharged CMMs revealed that electrostatic effects of negative charges at positions 62, 156 and 217 are detrimental, but are beneficial at position 166. These results indicate that the ground-state binding of SBL to the standard substrate, Suc-AAPF-pNA, to SBL is reduced, but without drastic attenuation of catalytic efficiency, and show that SBL tolerates high levels of charge at single sites.  相似文献   

9.
10.
Koh H  Igarashi S  Sode K 《Biotechnology letters》2003,25(20):1695-1701
The ion-exchange chromatography behavior of recombinant glucose dehydrogenase harboring pyrroloquinoline quinone (PQQGDH) was modified to greatly simplify its purification. The surface charge of PQQGDH was engineered by either fusing a three-arginine tail to the C-terminus of PQQGDH (PQQGDH+Arg3) or by substituting three residues exposed on the surface of the enzyme to Arg by site-directed mutagenesis (3RPQQGDH). During cation exchange chromatography, both surface charge-engineered enzymes eluted at much higher salt concentrations than the wild-type enzyme. After the chromatography purification step, both PQQGDH+Arg3 and 3RPQQGDH appeared as single bands on SDS-PAGE, while extra bands appeared with the wild-type protein sample. Although all tested kinetic parameters of both engineered enzymes are similar to those of wild type, both modifications resulted in enzymes with increased thermal stability. Our achievements have resulted in the greater production of an improved quality PQQGDH by a simplified process.  相似文献   

11.
Summary The alkaline serine protease, subtilisin, produced by Bacillus licheniformis was concentrated using hydrogel ultrafiltration. Separation efficiency at 15° and 20°C was 84 % but decreased above 25°C.  相似文献   

12.
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have recently adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). We now describe the use of this strategy to introduce multiple positive charges. A series of mono-, di- and triammonium methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutants (CMM) enzymes were determined at pH 8.6. The presence of up to three positive charges in the S1, S1' and S2 subsites of SBL resulted in up to 77-fold lowered activity, possibly due to interference with the histidinium ion formed in the transition state of the hydrolytic reactions catalyzed.  相似文献   

13.
The crystal structure of subtilisin BL, an alkaline protease from Bacillus lentus with activity at pH 11, has been determined to 1.4 A resolution. The structure was solved by molecular replacement starting with the 2.1 A structure of subtilisin BPN' followed by molecular dynamics refinement using X-PLOR. A final crystallographic R-factor of 19% overall was obtained. The enzyme possesses stability at high pH, which is a result of the high pI of the protein. Almost all of the acidic side-chains are involved in some type of electrostatic interaction (ion pairs, calcium binding, etc.). Furthermore, three of seven tyrosine residues have potential partners for forming salt bridges. All of the potential partners are arginine with a pK around 12. Lysine would not function well in a salt bridge with tyrosine as it deprotonates at around the same pH as tyrosine ionizes. Stability at high pH is acquired in part from the pI of the protein, but also from the formation of salt bridges (which would affect the pI). The overall structure of the enzyme is very similar to other subtilisins and shows that the subtilisin fold is more highly conserved than would be expected from the differences in amino acid sequence. The amino acid side-chains in the hydrophobic core are not conserved, though the inter-residue interactions are. Finally, one third of the serine side-chains in the protein have multiple conformations. This presents an opportunity to correlate computer simulations with observed occupancies in the crystal structure.  相似文献   

14.
Multiple molecular forms of subtilisin--extracellular serine protease produced by the wild strain Bac. subtilis A-50 and its mutant strains with the protease activity decreased two-fold and more were studied. Six molecular forms of subtilisin were found on the whole when 33 mutant strains have been investigated under the experimental conditions. It is essential that both the wild and each of mutant strains under study produced not more than three out of these six forms. Three molecular forms of subtilisin from the mutant strains are similar to those found in the wild strain A-50, and have the molecular weight, of 27 000-30 000. Three other forms of subtilisin were revealed only in the mutant strains, and had the molecular weight of about 20 000. Apparently there is only one structural gene for subtilisin in Bac. subtilis genome. The appearence of multiple molecular forms of subtilisin may be due to the post-translational modifications (limited proteolysis) of the initial type of enzyme, i.e. pre-subtilisin. Probably, that certain mulations not affecting the structural gene can significantly change the expression of such gene by varying of the degree of product modifications.  相似文献   

15.
The kinetic parameters of azoalbumin hydrolysis by alkaline proteinase from Bacillus subtilis were determined to be Km = 1.2 . 10(-3) M, kcat = 1.5 sec-1 according to the method of Lainuiwer-Berk and Km = 4 . 10(-3) M, kcat = 0.5 sec-1 from the analysis of the entire kinetic curve. It was found that pH optimum of subtilizin hydrolysis of various substrates and the shape of the curve depended on the substrate nature.  相似文献   

16.
Ruan B  Fisher KE  Alexander PA  Doroshko V  Bryan PN 《Biochemistry》2004,43(46):14539-14546
Subtilisin was engineered into a highly specific, processing protease, and the subtilisin prodomain was coengineered into an optimized recognition sequence. This involved five steps. First, a robust subtilisin mutant was created, which could tolerate the subsequent mutations needed for high specificity. Second, the substrate binding pocket was mutated to increase its sequence selectivity. Third, the subtilisin prodomain was engineered to direct cleavage to the junction of any protein fused to it. Fourth, the active site of subtilisin was engineered to kinetically isolate binding and cleavage reactions. Finally, specific anions were identified to trigger the processing reaction, with fluoride ions being particularly useful. The ability to isolate the binding and processing steps with a triggering mechanism created a protease with a virtual on-off switch. This allowed column-immobilized processing subtilisin to be used as both the affinity ligand and processing protease for one-step purification of proteins. Fusion proteins tagged with the engineered prodomain can be bound to the column and washed free of contaminants. Cleavage can be triggered by the addition of fluoride to release the pure target protein. The column is then regenerated by stripping off the tightly bound prodomain at pH 2.1. Ten proteins have been purified to date by this method.  相似文献   

17.
18.
Invasion of erythrocytes is an integral part of the Babesia divergens life cycle. Serine proteases have been shown to play an important role in invasion by related Apicomplexan parasites such as the malaria parasite Plasmodium falciparum. Here we demonstrate the presence of two dominant serine proteases in asexual B. divergens using a biotinylated fluorophosphonate probe. One of these active serine proteases (p48) and its precursors were recognized by anti-PfSUB1 antibodies. These antibodies were used to clone the gene encoding a serine protease using a B. divergens cDNA library. BdSub-1 is a single copy gene with no introns. The deduced gene product (BdSUB-1) clearly belongs to the subtilisin superfamily and shows significant homology to Plasmodium subtilisins, with the highest degree of sequence identity around the four catalytic residues. Like subtilisin proteases in other Apicomplexan parasites, BdSUB-1 undergoes two steps of processing during activation in the secretory pathway being finally converted to an active form (p48). The mature protease is concentrated in merozoite dense granules, apical secretory organelles involved in erythrocyte invasion. Anti-PfSUB1 antibodies have a potent inhibitory effect on erythrocyte invasion by B. divergens merozoites in vitro. This report demonstrates conservation of the molecular machinery involved in erythrocyte invasion by these two Apicomplexan parasites and paves the way for a comparative analysis of other molecules that participate in this process in the two parasites.  相似文献   

19.
Protein engineering of disulfide bonds in subtilisin BPN'   总被引:7,自引:0,他引:7  
C Mitchinson  J A Wells 《Biochemistry》1989,28(11):4807-4815
Five single-disulfide mutants were studied in subtilisin BPN', a cysteine-free, secreted serine protease from Bacillus amyloliquefaciens. The disulfides were engineered between residues 26-232, 29-119, 36-210, 41-80, and 148-243. These bonds connected a variety of secondary structural elements, located in buried or exposed positions at least 10 A from the catalytic Ser-221, and linked residues that were separated by 39 up to 206 amino acids. All disulfide bonds formed in the enzyme when the expressed protein was secreted from Bacillus subtilis, and the disulfides had only minor effects on the enzyme kinetics. Although these disulfide bonds varied by over 50-fold in their equilibrium constants for reduction with dithiothreitol, there was no correlation between the strength of the disulfide bond and the stability it imparted to the enzyme to irreversible inactivation. In some cases, the disulfide-bonded protein was stabilized greatly relative to its reduced counterpart. However, no disulfide mutant was substantially more stable than wild-type subtilisin BPN'. Some of these results can be rationalized by destabilizing effects of the cysteine mutations that disrupt interactions present in the folded enzyme structure. It is also possible that the rate of irreversible inactivation depends upon the kinetics and not the thermodynamics of unfolding and so the entropically stabilizing effect expected from a disulfide bond may not apply.  相似文献   

20.
Proteins of the subtilisin superfamily (subtilases) are widely distributed through many living species, where they perform a variety of processing functions. They are also used extensively in industry. In many of these enzymes, bound calcium ions play a key role in protecting against autolysis and thermal denaturation. We have determined the crystal structure of a highly thermostable protease from Bacillus sp. Ak.1 that is strongly stabilized by calcium. The crystal structure, determined at 1.8 A resolution (R=0. 182, Rfree=0.247), reveals the presence of four bound cations, three Ca(2+) and one Na(+). Two of the Ca(2+) binding sites, Ca-1 and Ca-2, correspond to sites also found in thermitase and the mesophilic subtilisins. The third calcium ion, however, is at a novel site that is created by two key amino acid substitutions near Ca-1, and has not been observed in any other subtilase. This site, acting cooperatively with Ca-1, appears to give substantially enhanced thermostability, compared with thermitase. Comparisons with the mesophilic subtilisins also point to the importance of aromatic clusters, reduced hydrophobic surface and constrained N and C termini in enhancing the thermostability of thermitase and Ak.1 protease. The Ak.1 protease also contains an unusual Cys-X-Cys disulfide bridge that modifies the active site cleft geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号