首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seeds of milk thistle (Silybum marianum L. Gaertner) contain silymarins and ca. 25% (w/w) of oil. A pre-treatment step involving refluxing with petroleum ether is usually performed before extraction of the silymarins using organic solvents. This paper compares the extraction of whole and defatted milk thistle seeds in various solvents as a function of temperature. The extraction of whole seeds of milk thistle with water at 50, 70 and 85 degrees C was also examined: the yield of silymarin increased with increasing water temperature. In most cases, ethanol at 60 degrees C recovered the largest quantities of silymarins. However, boiling water proved to be an efficient extraction solvent for the more polar silymarins such as taxifolin and silychristin, even when using whole seeds. Extractions of defatted seed meal with boiling ethanol returned maximum yields of 0.62, 3.89, 4.04, and 6.86 mg/g defatted seed of taxifolin, silychristin, silybinin A and silybinin B, respectively. When extracting defatted seed meal with ethanol, yields of taxifolin, silybinin A and silybinin B were, respectively, 6.8-, 0.95-, 1.7- and 1.6-fold higher than when extracting whole seeds. When extracting with boiling water, the yields of silychristin, silybinin A, and silybinin B were 380, 47 and 50% higher for whole seeds compared with defatted seeds.  相似文献   

2.
3.
Anti-melanogenesis effects of silymarin from milk thistle have been reported recently, but detailed tyrosinase inhibition properties of individual components have not been investigated. This study purported to substantiate tyrosinase inhibition and its mechanism based on a single metabolite. The responsible components for tyrosinase inhibition of target source were found out as flavonolignans which consist of isosilybin A (1), isosilybin B (2), silydianin (3), 2,3-dihydrosilychristin (4), silychristin A (5), silychristin B (6) and silybin (7), respectively. The isolated flavonolignans (17) inhibited both monophenolase (IC50 = 1.7–7.6 µM) and diphenolase (IC50 = 12.1–44.9 µM) of tyrosinase significantly. Their inhibitions were 10-fold effective in comparison with their mother skeletons (810). Inhibitory functions were also proved by HPLC analysis using N-acetyl-l-tyrosine as substrate. The predominant formation of Emet·I was confirmed from a long prolongation of lag time and a decrease of the static state activity of the enzyme. All tested compounds had a significant binding affinity to tyrosinase with KSV values of 0.06–0.27 × 104 L·mol−1, which are well correlated with IC50s. In kinetic study, all flavonolignan (17) were mixed type I (KI < KIS) inhibitors, whereas their mother skeletons (810) were competitive ones. The UPLC-ESI-TOF/MS analysis showed that the isolated inhibitors are the most abundant metabolites in the target plant.  相似文献   

4.

Milk thistle (Silybum marianum) is among the world’s popular medicinal plants. Start Codon Targeted (SCoT) marker system was utilized to investigate the genetic variability of 80 S. marianum genotypes from eight populations in Iran. SCoT marker produced 255 amplicons and 84.03% polymorphism was generated. The SCoT marker system’s polymorphism information content value was 0.43. The primers’ resolving power values were between 4.18 and 7.84. The percentage of polymorphic bands was between 33.3 and 100%. The Nei’s gene diversity (h) was 0.19–1.30 with an average 0.72. The Shannon’s index (I) ranged from 0.29 to 1.38 with an average value of 0.83. The average gene flow (0.37) demonstrated a high genetic variation among the studied populations. The variation of 42% was displayed by the molecular variance analysis among the populations while a recorded variation of 58% was made within the populations. Current investigation suggested that SCoT marker system could effectively evaluate milk thistle genotypes genetic diversity.

  相似文献   

5.
Biotechnological applications for metal recovery have played a greater role in recovery of valuable metals from low grade sulfide minerals from the beginning of the middle era till the end of the twentieth century. With depletion of ore/minerals and implementation of stricter environmental rules, microbiological applications for metal recovery have been shifted towards solid industrial wastes. Due to certain restrictions in conventional processes, use of microbes has garnered increased attention. The process is environmentally-friendly, economical and cost-effective. The major microorganisms in recovery of heavy metals are acidophiles that thrive at acidic pH ranging from 2.0–4.0. These microbes aid in dissolving metals by secreting inorganic and organic acids into aqueous media. Some of the well-known acidophilic bacteria such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Sulfolobus spp. are well-studied for bioleaching activity, whereas, fungal species like Penicillium spp. and Aspergillus niger have been thoroughly studied for the same process. This mini-review focuses on the acidophilic microbial diversity and application of those microorganisms toward solid industrial wastes.  相似文献   

6.
The solid waste obtained in malting industries when dehulling barley grains, which was mainly made up of barley husks, spent grains and grain fragments, was subjected to a double hydrothermal processing under selected conditions. The liquor from the second stage (containing xylooligosaccharides, XOS) was refined by membrane and ion exchange processing (with or without a previous endoxylanase treatment to reduce the XOS molecular weight). Three XOS concentrates with different purity and/or molecular weight distribution were fermented in vitro with faecal inocula to assess their prebiotic potential. Succinate, lactate, formiate, acetate, propionate and butyrate were generated in fermentations, confirming the prebiotic potential of the various products assayed. The purity of XOS concentrates did not play a significant role in fermentation, whereas the sample with shorter average degree of polymerization presented a faster fermentation kinetics and led to the highest concentration of lactic acid.  相似文献   

7.
Phytoremediation is a new ecological and cost-effective technology applied for cleaning heavy metals and total petroleum hydrocarbon contaminated (TPH-contaminated) soils. This study was conducted to evaluate the potential of milk thistle (Silybum marianum) to phytoremediate cadmium (Cd (II)) from contaminated soils. To this end, the investigators applied a completely randomized design with the factorial arrangement and four replications. The results indicated that all the evaluated parameters of S. Marianum, including shoot and root fresh and dry weight, as well as shoot and root Cd, were significantly influenced by Cd (II) concentration and diesel oil (DO). The Cd-contaminated soil showed minor declining effects on the produced plant biomass, whereas the DO-contaminated soil had more inhibitory effects. Moreover, the soil contaminated with both Cd and DO led to adverse effects on the plant biomass. The shoot and root Cd concentration had an increasing trend in the presence of DO as the bioconcentration factor (BCF) by 1.740 (+90.78%), 1.410 (+36.89%), 2.050 (+31.41%), 1.68 (+32.28%), and 1.371 (+22.41%) compared to the soil without DO at Cd (II) concentrations of 20, 40, 60, 80, and 100 mg/kg, respectively. Biological accumulation coefficient also showed the same trend as the BCF. In all the treatments, the translocation factor was >1. Therefore, it was demonstrated that milk thistle had high potential for transferring Cd from root to shoot and reducing its concentration in the soil. Moreover, the study revealed that milk thistle had high potential for absorbing Cd in the soil contaminated with Cd and DO.  相似文献   

8.
A solid state fermentation method was used to utilise pineapple, mixed fruit and maosmi waste as substrates for citric acid production using Aspergillus niger DS 1. Experiments were carried out in the presence and absence of methanol at different moisture levels. In the absence of methanol the maximum citric acid was obtained at 60% moisture level whereas in the presence of methanol the maximum citric acid was obtained at 70% moisture level. The stimulating effect of methanol was less at lower moisture level. The inhibitory effect of metal ions was also not observed and maximum citric acid yield of 51.4, 46.5 and 50% (based on sugar consumed) was obtained from pineapple, mixed fruit and maosmi residues, respectively.  相似文献   

9.
The aim of the present work was to investigate the feasibility of jackfruit seed powder as a substrate for the production of pigments by Monascus purpureus in solid-state fermentation (SSF). A pigment yield of 25ODUnits/g dry fermented substrate was achieved by employing jackfruit seed powder with optimized process parameters such as 50% initial moisture content, incubation temperature 30 degrees C, 9x10(4)spores/g dry substrate inoculum and an incubation period of seven days. The color of the pigments was stable over a wide range of pH, apparently due to the buffering nature of the substrate, which could be a significant point for its scope in food applications. To the best of our knowledge this is the first report on pigment production using jackfruit seed powder in solid-state fermentation (SSF).  相似文献   

10.
11.
An integrated model for the composting process was developed. The structure of the model is such that it can be implemented in any mixture of different substrates, even in the case of co-composting of a solid waste with industrial wastewater. This paper presents a mathematical formulation of the physicochemical and biological principles that govern the composting process. The model of the co-composting ecosystem included mass transfer, heat transfer and biological processes. The biological processes included in the model were hydrolysis of particulate substrates, microbial growth and death. Two microbial populations (bacteria and fungi) were selected using Monod kinetics. Growth limiting functions of inhibitory factors, moisture and dissolved oxygen were added in the Monod kinetics. The bacteria were considered to utilise the easy biodegradable carbon hydrolysis product, fungi the difficult one, while both could degrade the carbon of wastewater. The mass balances of the most important nutrients, nitrogen and phosphorous, were also included in this approach. Model computer simulations provided results that fitted satisfactory the experimental data. Conclusively, the model could be a useful tool for the prediction of the co-composting process performance in the future and could be used to assist in the operation of co-composting plants.  相似文献   

12.
利用黑曲霉固态发酵啤酒糟生产饲料复合酶的研究   总被引:2,自引:0,他引:2  
以啤酒糟为主要基质,利用黑曲霉固态发酵生产酸性蛋白酶、木聚糖酶和纤维素酶等多种饲料复合酶,研究了黑曲霉固态发酵培养基组成对复合酶酶活的影响,确定最优培养基配方为:啤酒糟75%,麸皮25%,硫酸铵1%,KH_2PO_4 0.2%,MnSO_4 0.1%、ZnSO_4 0.2%,料水比1:2。在适宜的发酵条件下,经30℃发酵5 d,烘干后得到的复合酶制剂中,具有多种酶活性(以干基计)。其中酸性蛋白酶活力3 800 U/g,木聚糖酶活力12 00 U/g和纤维素酶活力18 U/g。  相似文献   

13.
Introduction – Silybin, a standardised extract of flavanolignans from the seeds of Silybum marianum, has been used for centuries as a natural remedy in the treatment of hepatitis and cirrhosis. The higher yield of silybin by using more efficient extraction technique is of particular interest in the herbal products manufacture. Objective – To systematically investigate the important factors of enzyme‐assisted extraction of flavanolignans from the seeds of Silybum marianum to enhance the extraction yield of silybin. Methodology – The important factors of enzyme‐assisted extraction were optimised by employing Box–Behnken design with the aid of the orthogonal array design (OAD) OA8 (27). The effects of enzyme incubation temperature (EIT), the pH of enzyme solution (PES) and the size of seeds (SS) on the yield of silybin were visualised as three‐dimensional response surface and contour plots. Results – The predictive yield was 24.6 mg/g defatted seeds under the optimum enzymolysis conditions (EIT 40°C, PES 4.5 and SS 7003 μm). The coefficient of the model was r2 > 0.97 (n = 15). The actual yield of silybin was 24.81 ± 1.93 mg/g defatted seeds, higher by 138 and 123.6% than that from ethanol extraction in this study and in the previous literature, respectively. IR spectra and HPLC of the extracts by EAE were in agreement with those from ethanol extraction. SEM and TEM pictures of defatted seeds by variant extractions demonstrate that the extraction of silybin depends on the destruction of cell walls. Conclusion – The results suggest that EAE is a promising alternative for the extraction of silybin by the use of traditional ethanol extraction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Chen L  Yang X  Raza W  Luo J  Zhang F  Shen Q 《Bioresource technology》2011,102(4):3900-3910
Agro-industrial wastes of cattle dung, vinegar-production residue and rice straw were solid-state fermented by inoculation with Trichoderma harzianum SQR-T037 (SQR-T037) for production of bioorganic fertilizers containing SQR-T037 and 6-pentyl-α-pyrone (6PAP) to control Fusarium wilt of cucumber in a continuously cropped soil. Fermentation days, temperature, inoculum and vinegar-production residue demonstrated significant effects on the SQR-T037 biomass and the yield of 6PAP, based on fractional factorial design. Three optimum conditions for producing the maximum SQR-T037 biomass and 6PAP yield were predicted by central composite design and validated. Bioorganic fertilizer containing 8.46 log10 ITS copies g−1 dry weight of SQR-T037 and 1291.73 mg kg−1 dry weight of 6PAP, and having the highest (p < 0.05) biocontrol efficacy, was achieved at 36.7 fermentation days, 25.9 °C temperature, 7.6% inoculum content, 41.0% vinegar-production residue, 20.0% rice straw and 39.0% cattle dung. This is a way to offer a high value-added use for agro-industrial wastes.  相似文献   

15.
A variety of pharmacological effectors of signal transduction pathways were used to investigate the elicitor-activated sequence of cellular responses by which yeast extract (YE) or methyljasmonate (MeJA) enhanced production of silymarin in cell cultures of Silybum marianum. As we recently showed that inhibition of external and internal calcium fluxes significantly increased flavonolignan production in S. marianum cultures, we examined whether calcium mediates signaling events leading to enhancement of silymarin production upon YE or MeJA elicitation. Pre-treatment of cultures with calcium chelators, calcium blockers or intracellular antagonists enhanced the elicitor effect of YE or MeJA. The increase of intracellular-free Ca(2+) level also promoted the elicitor effect, suggesting that an external source of calcium or alterations in internal calcium fluxes were not required for the elicitation to occur. Activation of phosphorylation/dephosphorylation cascades did not appear to mediate the elicitation mechanism; the increase in silymarin induced by elicitation was not suppressed by inhibitors of protein phosphatases or by protein kinase inhibitors. No H(2)O(2) generation was detected at any time after elicitation. Also, diphenyleneiodonium, a potent inhibitor of NAD(P)H-oxidase, did not block silymarin production in elicited cultures. From these results, we conclude that S. marianum cell cultures do not appear to employ conserved signaling components in the transduction of the elicitor signal to downstream responses such as silymarin production.  相似文献   

16.
Solid-state fermentation (SSF) was evaluated to produce gluconic acid by metal resistant Aspergillus niger (ARNU-4) strain using tea waste as solid support and with molasses based fermentation medium. Various crucial parameters such as moisture content, temperature, aeration and inoculum size were derived; 70% moisture level, 30 degrees C temperature, 3% inoculum size and an aeration volume of 2.5l min(-1) was suited for maximal (76.3 gl(-1)) gluconic acid production. Non-clarified molasses based fermentation media was utilized by strain ARNU-4 and maximum gluconic acid production was observed following 8-12 days of fermentation cycle. Different concentrations of additives viz. oil cake, soya oil, jaggary, yeast extract, cheese whey and mustard oil were supplemented for further enhancement of the production ability of microorganism. Addition of yeast extract (0.5%) was observed inducive for enhanced (82.2 gl(-1)) gluconic acid production.  相似文献   

17.
In present study, potentials of water hyacinth (Eichhornia crassipes) and water chestnut (Trapa bispinnosa) employed for phytoremediation of toxic metal rich brass and electroplating industry effluent, were examined in terms of biogas generation. Inability of the plants to grow in undiluted effluent directed to select 20%, 40% and 60% effluent concentrations (with deionized water) for phytoremediation experiments. Slurry of both the plants used for phytoremediation produced significantly more biogas than that by the control plants grown in unpolluted water; the effect being more pronounced with plants used for phytoremediation of 20% effluent. Maximum cumulative production of biogas (2430c.c./100gdm of water hyacinth and 1940c.c./100gdm of water chest nut) and per cent methane content (63.82% for water hyacinth and 57.04% for water chestnut) was observed at 5mm particle size and 1:1 substrate/inoculum ratio, after twenty days incubation. Biogas production was quicker (maximum from 8-12days) in water hyacinth than in water chestnut (maximum from 12-16days). The qualitative and quantitative variations in biogas production were correlated with COD, C, N, C/N ratio and toxic metal contents of the slurry used.  相似文献   

18.
Studies have been carried out into the production of microbial protein from cassava using Trichoderma reesei and yeast. In monoculture studies, T. reesei was grown on whole cassava medium to give 0.74g dry cell/g cassava. The dry material contained 42% protein. The culture filtrate contained 5.8 g/l glucose, which supported the growth of yeast. Mixed culture fermentation was also carried out with the two microorganisms. Besides accelerating the rate of degradation and conversion of cassava to cells (0.85g cell/g cassava) the yeast boosted the protein content of the growth product to 51%.  相似文献   

19.
In this work, fresh soybean meal was used as the substrate for both batch and continuous experiments in a rotational drum fermentation (RDF) system to characterize the acidogenic process of solid organic waste degradation at high unionized volatile acid (U-VA) level and evaluate the effect of water flushing on the acidogenic performance. The experiments were conducted under mesophilic condition with a reaction time of 20 days. The results of the batch experiment showed that U-VA had a growing adverse effect on the volatile acid (VA) production and hydrolysis of the substrate as the initially added U-VA concentration increased (0, 5, 15, 25 g/L). VA formation deteriorated drastically when the initial U-VA concentration exceeded 5 g/L. VS degradation ratios decreased from 43.8% to 7.3%, and the hydrolysis rate constants varied between 28.8 and 3.8 x 10(-3)/d in response to the initial U-VA concentration. In the continuous experiment, two cascade process configurations (CP1 and CP2) without and with VA removal by water flushing, respectively, were developed. The results showed that the hydrolysis rate constants and VS degradation ratios were 13.1 x 10(-3)/d and 23%, respectively, in CP2, while only 9.1 x 10(-3)/d and 16.7% in CP2. Compared to CP1, the VA spectrum varied little in CP2 with water flushing. It suggested that the higher U-VA level had a significant inhibition on the acidogenic process of solid organic waste degradation, and the VA removal by water flushing improved the acidogenic performance.  相似文献   

20.
This study was focused primarily on the degradation of lignin in water hyacinth and barley straw for animal-feed production. The experiment was performed in a 1.5-L Applikon fermenter for 30 days, varying the air flow rate from 0.022 VVM/0.047 VMM to 0.048 VVM/0.102 VMM. A novel approach was introduced for prediction of a kinetic model by using instantaneous respiratory quotient (RQ) measurements and steady state elemental balances. Growth kinetics were determined for the fungus in a 30-day fermentation with a mixture of barley straw and water hyacinth as the substrate. The instantaneous heat-interaction profile was predicted from steady state balances. Fermentation data were checked for consistency using the entropy balance inequality, and thermodynamic efficiency was calculated to show that degradation of lignocellulosics byPleurotus ostreatus followed more than one metabolic pathway during the course of the fermentation. Growth ofP. ostreatus on lignocellulosics, such as water hyacinth and barley straw, was di-auxic or possibly tri-auxic during the 30 days of fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号