首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The contribution of substrate binding to allosteric regulation in the ribozyme catalysis has been investigated using allosteric ribozymes consisting of the hammerhead ribozyme and a flavin mononucleotide (FMN) aptamer. Kinetic parameters were measured for various lengths of the substrates with a wide range of binding energy. The maximum cleavage rate of each ribozyme was retained with the long substrates. However, the cleavage rates largely decreased by the truncation of the substrates according to loss in the free energy of substrate binding. The high sensitivity to the substrate lengths is attributed to the increase in the energetic requirement for the catalytic core folding, which is caused by the incorporation of the aptamer region. One role of FMN binding is assisting the promotion of the core folding through the stabilization of the aptamer domain. The allosteric effect is significantly expressed only when the substrate binding energy is insufficient for the core folding of the ribozyme-substrate complex. This type of allosteric interaction dominates the substrate dependency of another type of regulation. These results demonstrate that an adequate correlation between the type of regulation and the substrate binding is responsible for the effective allosteric interaction in the kinetic process.  相似文献   

3.
Mechanism for allosteric inhibition of an ATP-sensitive ribozyme.   总被引:1,自引:1,他引:0       下载免费PDF全文
We report the structural basis for the modulation of an ATP-sensitive ribozyme that was engineered by modular rational design. This allosteric ribozyme is composed of two independently functioning domains, one a receptor for ATP and the other a self-cleaving ribozyme. When fused in the appropriate fashion, the conjoined aptamer-ribozyme construct functions as an allosteric ribozyme that is inhibited in the presence of ATP. The aptamer domain remains conformationally heterogeneous in the absence of ATP, but folds into a distinct structure upon ligand binding. This ATP-induced conformational change causes a reduction in catalytic activity of the adjacent ribozyme domain due to steric interference between the aptamer and ribozyme tertiary structures. This mechanism for structural and functional modulation of nucleic acids is one of several possible mechanisms by which the function of ribozymes could be specifically controlled by small effector molecules.  相似文献   

4.
5.
Using ribonucleotide reductase encoded by vaccinia virus as a model for the mammalian enzyme, our laboratory developed an assay that allows simultaneous monitoring of the reduction of ADP, CDP, GDP, and UDP. That study found ADP reduction to be specifically inhibited by ADP itself. To learn whether this effect is significant for cellular regulation, we have analyzed recombinant mouse ribonucleotide reductase. We report that allosteric control properties originally described in single-substrate assays operate also under our four-substrate assay conditions. Three distinctions from the vaccinia enzyme were seen: 1) higher sensitivity to allosteric modifiers; 2) higher activity with UDP as substrate; and 3) significant inhibition by ADP of GDP reduction as well as that of ADP itself. Studies of the effects of ADP and other substrates upon binding of effectors indicate that binding of ribonucleoside diphosphates at the catalytic site influences dNTP binding at the specificity site. We also examined the activities of hybrid ribonucleotide reductases, composed of a mouse subunit combined with a vaccinia subunit. As previously reported, a vaccinia R1/mouse R2 hybrid has low but significant activity. Surprisingly, a mouse R1/vaccinia R2 hybrid was more active than either mouse R1/R2 or vaccinia R1/R2, possibly explaining why mutations affecting vaccinia ribonucleotide reductase have only small effects upon viral DNA replication.  相似文献   

6.
Changes in conformation of glutamate dehydrogenase from beef liver as a result of interactions with allosteric effectors have been demonstrated from the phosphorescence emission of tryptophan. The triplet state lifetime shows that whereas activators ADP and L-leucine enhance considerably the rigidity of the protein structure surrounding the chromophore, inhibitors GTP, Zn2+ and Ag+ act in an opposite manner increasing the flexibility of this region of the macromolecule. Such changes in dynamical structure of the protein are confirmed independently for the ADP and GTP complexes by oxygen diffusion studies. Phosphorescence lifetime measurements at various protein concentrations and with the enzyme crosslinked by glutaraldehyde demonstrate that ADP and GTP exert the same effect on the structure of the protein regardless of its degree of polymerization. The connection between changes in protein structure and regulatory function is strengthened by the finding that (1) ligands with no regulatory function (Eu3+) do not affect protein structure; (2) pairs of opposite effectors which neutralize each other's influence on catalytic activity do restore an apparent native-like structure in the enzyme. Mutual neutralization and the observation that ADP and GTP display maximum activity at partial saturation of the binding sites has been interpreted in terms of a model which assumes asymmetry in the hexameric enzyme at the trimer level. Evidence for the existence of conformational heterogeneity among the subunits of the enzyme has been provided.  相似文献   

7.
Lovelace LL  Gibson LM  Lebioda L 《Biochemistry》2007,46(10):2823-2830
Thymidylate synthase (TS) is a target in the chemotherapy of colorectal cancer and some other neoplasms. It catalyzes the transfer of a methyl group from methylenetetrahydrofolate to dUMP to form dTMP. On the basis of structural considerations, we have introduced 1,3-propanediphosphonic acid (PDPA) as an allosteric inhibitor of human TS (hTS); it is proposed that PDPA acts by stabilizing an inactive conformer of loop 181-197. Kinetic studies showed that PDPA is a mixed (noncompetitive) inhibitor versus dUMP. In contrast, versus methylenetrahydrofolate at concentrations lower than 0.25 microM, PDPA is an uncompetitive inhibitor, while at PDPA concentrations higher than 1 microM the inhibiton is noncompetive, as expected. At the concentrations corresponding to uncompetitive inhibition, PDPA shows positive cooperativity with an antifolate inhibitor, ZD9331, which binds to the active conformer. PDPA binding leads to the formation of hTS tetramers, but not higher oligomers. These data are consistent with a model in which hTS exists preferably as an asymmetric dimer with one subunit in the active conformation of loop 181-197 and the other in the inactive conformation.  相似文献   

8.
L N Johnson 《FASEB journal》1992,6(6):2274-2282
Structural studies of muscle glycogen phosphorylase during the last two decades have provided a detailed mechanism for the molecular basis of the control by phosphorylation and by allosteric effectors and the catalytic mechanism. Control by phosphorylation is effected by a disorder to order transition of the NH2-terminal residues that promotes localized changes in the structure of the protein at the region of subunit-subunit contacts and larger changes in the quaternary structure. The covalently attached phosphate group acts like an allosteric effector but the full manifestation of the response is also dependent on the NH2-terminal tail residues. The noncovalently bound allosteric effectors produce similar shifts in the structural states although these are bound at sites that are remote from the serine-phosphate site. The communication from these sites to the catalytic site is through long-range interactions that result in activation of the enzyme through opening access to the buried catalytic site and through creation of the substrate phosphate recognition site by an interchange of an acidic group with a basic group. Recent advances in expression systems have opened the way to a study of properties both for the muscle and other isozymes and other species that should illuminate the different regulatory roles of the enzyme in different tissues and organisms. The allosteric mechanism of activation of phosphorylase by phosphorylation may be relevant to other enzymes although it is now known that other mechanisms such as electrostatic steric blocking mechanisms also exist.  相似文献   

9.
10.
11.
12.
Bidirectional effectors of a group I intron ribozyme.   总被引:4,自引:1,他引:3       下载免费PDF全文
The group I self-splicing introns found in many organisms are competitively inhibited by L-arginine. We have found that L-arginine acts stereoselectively on the Pc1. LSU nuclear group I intron of Pneumocystis carinii, competitively inhibiting the first (cleavage) step of the splicing reaction and stimulating the second (ligation) step. Stimulation of the second step is most clearly demonstrated in reactions whose first step is blocked after 15 min by addition of pentamidine. The guanidine moiety of arginine is required for both effects. L-Canavanine is a more potent inhibitor than L-arginine yet it fails to stimulate. L-Arginine derivatized on its carboxyl group as an amide, ester or peptide is more potent than L-arginine as a stimulator and inhibitor, with di-arginine amide and tri-arginine being the most potent effectors tested. The most potent peptides tested are 10,000 times as effective as L-arginine in inhibiting ribozyme activity, and nearly 400 times as effective as stimulators. Arginine and some of its derivatives apparently bind to site(s) on the ribozyme to alter its conformation to one more active in the second step of splicing while competing with guanosine substrate in the first step. This phenomenon indicates that ribozymes, like protein enzymes, can be inhibited or stimulated by non-substrate low molecular weight compounds, which suggests that such compounds may be developed as pharmacological agents acting on RNA targets.  相似文献   

13.
Generalized binding phenomena in an allosteric macromolecule   总被引:2,自引:0,他引:2  
A general macromolecular partition function is developed in terms of chemical ligand activity, temperature and pressure for systems described by an array of species which are characterized by their state of allosteric conformation and ligand stoichiometry. The effects of chemical ligand binding, enthalpy change, and volume change are treated in a parallel manner. From a broad viewpoint all of these effects can be regarded as specific cases of generalized binding phenomena. This approach provides a general method for analyzing calorimetric and ligand binding experiments. Several applications are given: (1) Thermal scanning data for tRNAphe (P.L. Privalov and V.V. Filimonov, J. Mol. Biol. 122 (1978) 447) are shown to fit a general model with six conformational states. By application of linkage theory it is shown that sodium chloride is expelled as the molecule denatures. (2) The results of calorimetric titrations on the arabinose binding protein (H. Fukada, J.M. Sturtevant and F.A. Quiocho, J. Mol. Biol. 258 (1983) 13193) are shown to fit a simple two-state allosteric model. (3) A thermal binding curve is simulated for an unusual respiratory protein, trout I hemoglobin (B.G. Barisas and S.J. Gill, Biophys. Chem. 9 (1979) 235), in order to illustrate both the similarities and differences between enthalpy and chemical ligand binding processes.  相似文献   

14.
A highly constrained pseudo-tetrapeptide (OC252-324) further defines a new allosteric binding site located near the center of fructose-1,6-bisphosphatase. In a crystal structure, pairs of inhibitory molecules bind to opposite faces of the enzyme tetramer. Each ligand molecule is in contact with three of four subunits of the tetramer, hydrogen bonding with the side chain of Asp187 and the backbone carbonyl of residue 71, and electrostatically interacting with the backbone carbonyl of residue 51. The ligated complex adopts a quaternary structure between the canonical R- and T-states of fructose-1,6-bisphosphatase, and yet a dynamic loop essential for catalysis (residues 52-72) is in a conformation identical to that of the T-state enzyme. Inhibition by the pseudo-tetrapeptide is cooperative (Hill coefficient of 2), synergistic with both AMP and fructose 2,6-bisphosphate, noncompetitive with respect to Mg2+, and uncompetitive with respect to fructose 1,6-bisphosphate. The ligand dramatically lowers the concentration at which substrate inhibition dominates the kinetics of fructose-1,6-bisphosphatase. Elevated substrate concentrations employed in kinetic screens may have facilitated the discovery of this uncompetitive inhibitor. Moreover, the inhibitor could mimic an unknown natural effector of fructose-1,6-bisphosphatase, as it interacts strongly with a conserved residue of undetermined functional significance.  相似文献   

15.
Phosphofructokinase (PFKase) was purified from an extreme thermophile. Thermus thermophilus. Allosteric natures of T. thermophilus PFKase is similar to those of Bacillus stearothermophilus PFKase, that is, hyperbolic plots of the activity versus concentration of fructose 6-phosphate (F6P) were changed into a sigmoidal shape by the addition of phosphoenolpyruvate (PEP), while further addition of ADP caused it to revert to a hyperbolic shape. The native T. thermophilus PFKase has an Mr of 148,000 consisting of four 36,500 subunits. However, it exists as a two-subunit form of Mr 74,000 in the presence of PEP. The two-subunit form was catalytically inactive. The four-subunit enzyme was regenerated by addition of either F6P or Mg.ADP, or by removal of PEP from the solution. This reversible dissociation was observed within a wide range of pH (6.5 to 8.4) and temperature (4 degrees C to 65 degrees C). Thus, unlike PFKase from other sources, the allosteric kinetics of T. thermophilus PFKase can be explained well, at least qualitatively, by the dynamic equilibrium between the active four-subunit form and inactive two-subunit form that is modulated by PEP, F6P and Mg.ADP. Parallel suppression of the PEP-induced conversion in molecular form and kinetics by high concentrations of sulfate and phosphate supports the above explanation. Also, the observation that the degree of PEP inhibition was dependent on the protein concentration of the PFKase in the assay solution is consistent with the presence of this equilibrium.  相似文献   

16.
Nillius D  Jaenicke E  Decker H 《FEBS letters》2008,582(5):749-754
Phenoloxidases and hemocyanins have similar type 3 copper centers although they perform different functions. Hemocyanins are oxygen carriers, while phenoloxidases (tyrosinase/catecholoxidase) catalyze the initial step in melanin synthesis. Tyrosinases catalyze two subsequent reactions, whereas catecholoxidases catalyze only the second one. Recent results indicate that hemocyanins can also function as phenoloxidases and here we show for the first time that hemocyanin can be converted to phenoloxidase. Furthermore, its substrate specificity can be switched between catecholoxidase and tyrosinase activity depending on effectors such as hydroxymethyl-aminomethan (Tris) and Mg(2+)-ions. This demonstrates that substrate specificity is not caused by a chemical modification of the active site.  相似文献   

17.
18.
We report novel chemical properties of the ribozyme derived from the smallest group I intron (subgroup IC3) that comes from the pre-tRNA(Ile) of the bacterium Azoarcus sp. BH72. Despite the small size of the Azoarcus ribozyme (195 nucleotides (nt)), it binds tightly to the guanosine nucleophile (Kd = 15 +/- 3 microM) and exhibits activity at high temperatures (approximately 60-70 degrees C). These features may be due to the two GA3 tetraloop interactions postulated in the intron and the high GC content of the secondary structure. The second order rate constant for the Azoarcus ribozyme, ((k(cat)/Km)S = 8.4 +/- 2.1 x 10(-5) M(-1) min(-1)) is close to that found for the related ribozyme derived from the pre-tRNA(Ile) of the cyanobacterium Anabaena PCC7120. pH dependence studies and kinetic analyses of deoxy-substituted substrates suggest that the chemical cleavage step is the rate-determining process in the Azoarcus ribozyme. This may be due to the short 3-nt guide sequence-substrate pairing present in the Azoarcus ribozyme. Finally, the Azoarcus ribozyme shares features conserved in other group I ribozymes including the pH profile, the stereospecificity for the Rp-phosphorothioate at the cleavage site and the 1000-fold decrease in cleavage rate with a deoxyribonucleoside leaving group.  相似文献   

19.
The O2 binding properties of bovine Hb were examined. The increase in Cl- and DPG concentration enhanced P50. A reduction in n(max) was observed at high Cl- concentration, while DPG had little effect on n(max). An increase in Cl- concentration enhanced the Bohr effect, the magnitude of which reached a maximum at 0.1 M Cl- and 20 degrees C. This concentration is nearly equal to that at the highest slope of the log P50 vs. log [Cl-] plot, and also equal to the physiological Cl- concentration (0.1 M) of bovine blood. Furthermore, the influence of Cl- concentration on the Bohr effect is independent of temperature. On the other hand, in the absence of Cl-, bovine Hb is sensitive to DPG; an increase in DPG concentration enhanced the Bohr effect, which reached a maximum at 3 mM DPG and 20 degrees C. This concentration is nearly equal to that at the highest slope of the log P50 vs. log [DPG] plot. At low DPG concentrations, the DPG effect on the Bohr effect became small with increasing temperature, whereas at high DPG concentrations, the DPG effect was insensitive to temperature changes. At the physiological concentration of DPG (0.5 mM), increases in both Cl- concentration and temperature diminished the DPG effect. At the physiological concentrations of Cl- and DPG, the Bohr effect was -0.36 at 37 degrees C. The deltaH value at the physiological concentrations of Cl- and DPG was approximately -5.8 kcal/mol at pH 7.4. These results indicate that Cl- and temperature are important determinants of the O2 binding properties of bovine Hb.  相似文献   

20.
A steady state kinetic investigation of the P(i) activation of 5-phospho-d-ribosyl alpha-1-diphosphate synthase from Escherichia coli suggests that P(i) can bind randomly to the enzyme either before or after an ordered addition of free Mg(2+) and substrates. Unsaturation with ribose 5-phosphate increased the apparent cooperativity of P(i) activation. At unsaturating P(i) concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with P(i) directs the subsequent ordered binding of Mg(2+) and substrates via a fast pathway, whereas saturation with ribose 5-phosphate leads to the binding of Mg(2+) and substrates via a slow pathway where P(i) binds to the enzyme last. The random mechanism for P(i) binding was further supported by studies with competitive inhibitors of Mg(2+), MgATP, and ribose 5-phosphate that all appeared noncompetitive when varying P(i) at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing P(i) concentrations. Results from ADP inhibition of P(i) activation suggest that these effectors compete for binding to a common regulatory site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号