首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After total hip replacement (THR) impingement of the implant components causes shear stresses at the acetabular implant-bone interface. In the current study the finite element method (FEM) was applied to analyse the shear stresses at a fully bonded implant-bone interface assuming total ingrowth of the cup. The FE model of a press-fit acetabular component and the proximal part of the femoral component incorporates non-linear material and large sliding contact. The model was loaded with a superior-medial joint load of 435 N simulating a two-legged stance. Starting at initial impingement, the femoral component was medially rotated by 20 degrees . The peak tilting shear stress of -2.6 MPa at the impingement site takes effect towards the pole of the cup. The torsional shear stress at the impingement site is zero. On each side of the impingement site, there are extrema of torsional shear stress reaching -1.8 and 1.8 MPa, respectively. The global peak shear stress during impingement may indicate a possible starting point for cup loosening. The pattern of the torsional shear stresses suggests that besides the symmetric lever-out, an additional asymmetrical tilting of the cup occurs that can be explained by the orientation of the applied joint load.  相似文献   

2.
Biphasic properties of articular cartilage allow it to be an excellent bearing material and have been studied through several simplified experiments as well as finite element modelling. However, three-dimensional biphasic finite element (FE) models of the whole joint are rare. The current study was carried out to experimentally validate FE methodology for modelling hemiarthroplasty. Material properties such as equilibrium elastic modulus and permeability of porcine acetabular cartilage were initially derived by curve-fitting an experimental deformation curve with that obtained using FE. These properties were then used in the hemiarthroplasty hip joint modelling. Each porcine acetabular cup was loaded with 400N using a 34mm diameter CoCr femoral head. A specimen-specific FE model of each acetabular cup was created using μCT and a series of software processes. Each model was analysed under conditions similar to those tested experimentally. Contact stresses and contact areas predicted by the model, immediately after loading, were then compared with the corresponding experimentally measured values. Very high peak contact stresses (maximum experimental: 14.09MPa) were recorded. A maximum difference of 12.42% was found in peak contact stresses. The corresponding error for contact area was 20.69%. Due to a fairly good agreement in predicted and measured values of contact stresses and contact areas, the integrated methodology developed in this study can be used as a basis for future work. In addition, FE predicted total fluid load support was around 80% immediately after loading. This was lower than that observed in conforming contact problems involving biphasic cartilage and was due to a smaller local contact area and variable clearance making fluid exudation easier.  相似文献   

3.
Dislocation remains a disturbingly frequent complication of total hip arthroplasty (THA). Over the past several years, increasingly rigorous biomechanical approaches have been developed for studying dislocation, both experimentally and computationally. Realism of the input motion challenge data has lagged behind most other aspects of this body of work, and anterior dislocation maneuvers remain unstudied. To enhance realism of biomechanical studies of dislocation, motion data are here reported for ten THA-aged subjects, each repeatedly performing seven maneuvers known to be dislocation-prone. An optoelectronic motion tracking system and a recessed force plate captured the kinematics and ground reaction forces of these maneuvers. Using an established inverse dynamics model to estimate hip joint loading, 354 motion trials were evaluated using an existing finite element model of THA dislocation. Worst-case-scenario THA constructs were simulated (22 mm femoral head, acetabular cup orientations at the limit of the accepted safe zone), in order to deliberately induce impingement and dislocation. The results showed a high incidence of computationally predicted dislocation for all movements studied, but also that risk was very maneuver-dependent, with patients being six times more likely to dislocate from a low-sit-to-stand maneuver than from stooping. These new motion data hopefully will help facilitate systematic efforts to reduce the incidence of dislocation.  相似文献   

4.
Due to the shallowness of the glenohumeral joint, a challenging but essential requirement of a glenohumeral prosthesis is the prevention of joint dislocation. Weak glenoid bone stock and frequent dysfunction of the rotator cuff, both of which are common with rheumatoid arthritis, make it particularly difficult to achieve this design goal. Although a variety of prosthetic designs are commercially available only a few experimental studies have investigated the kinematics and dislocation characteristics of design variations. Analytical or numerical methods, which are predictive and more cost-effective, are, apart from simple rigid-body analyses, non-existent. The current investigation presents the results of a finite element analysis of the kinematics of a total shoulder joint validated using recently published experimental data for the same prostheses. The finite element model determined the loading required to dislocate the humeral head, and the corresponding translations, to within 4% of the experimental data. The finite element method compared dramatically better to the experimental data (mean difference=2.9%) than did rigid-body predictions (mean difference=37%). The goal of this study was to develop an accurate method that in future studies can be used for further investigations of the effect of design parameters on dislocation, particularly in the case of a dysfunctional rotator cuff. Inherently, the method also evaluates the glenoid fixation stresses in the relatively weak glenoid bone stock. Hence, design characteristics can be simultaneously optimised against dislocation as well as glenoid loosening.  相似文献   

5.
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy; cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and pre-load cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature; in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers.  相似文献   

6.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

7.
The rigidity and stresses in external fracture fixation devices were studied by means of the finite element method. Different geometries and material parameters were simulated using a beam element model. Axial, bending and torsional loads were applied through the bone ends and the displacement obtained at the fracture sites was used to calculate the fracture fixation stiffness. The key parameters which increased fixation rigidity were identified. High pin stresses were predicted under certain application conditions. Possible clinical implications for the use of such apparatus are discussed in the light of bone fracture healing. The present results are expected to have a significant impact on future design modifications and clinical applications of this popular instrument in orthopedic surgery and traumatology.  相似文献   

8.
The goal of this study was to investigate the impact of cam impingement, a biomechanical risk factor, on hip joint degeneration and ultimately coxarthrosis. 3D finite element solid models of a healthy and a pathologic hip were developed based on clinical reports. The biphasic characteristics of cartilaginous tissues were considered to identify localised solid matrix overloading during normal walking and sitting down (SD). Localised femoral intrusion at the anterior-superior pelvic horn was revealed in the pathologic hip during SD, where the radial and meridional solid stresses in the acetabular cartilage and circumferential solid stresses within the acetabular labrum increased by 3.7, 1.5 and 2.7 times, respectively. The increased solid-on-solid stresses, reduction in fluid-load support and associated higher friction during articulation may result in joint wear and other degenerative changes in the hip.  相似文献   

9.
A new finite element model (FEM) based on an elasto-plastic behavior of ultra high molecular weight polyethylene (UHMWPE) was used to study the wear behavior of UHMWPE acetabular cup, which has a 32 mm diameter femoral head. The model imposed a plastic yield stress of 8 MPa on the UHMWPE so that any stresses beyond this would automatically be redistributed to its neighbor. The FEM model adopted a unique mesh design based on an open cube concept which eliminated the problems of singularities. Wear prediction combined the influences of contact stress, sliding distance and a surface wear coefficient. The new model predicted significantly higher volumetric wear rate (57 mm(3)/yr) well within the average reported clinical values. The model was also used to study the effect of friction and clearance between the acetabular cup and the femoral head. Increase in friction increased the volumetric wear rate but did not appear to affect the linear wear rate, which remained at 0.12 +/- 0.02 mm/yr. The predicted wear was sensitive to clearance. It was found that when the clearance was close to 0 and >0.5mm, severe wear occurred. The best clearance range was between 0.1 and 0.15 mm where the average linear wear rate was 0.1mm/yr and the volumetric wear was 55 mm(3)/yr. The present work indicates the importance of avoiding too tight or too loose a diametrical clearance.  相似文献   

10.
The stress distribution within the polyethylene insert of a total knee joint replacement is dependent on the kinematics, which in turn are dependent on the design of the articulating surfaces, the relative position of the components and the tension of the surrounding soft tissues. Implicit finite element analysis techniques have been used previously to examine the polyethylene stresses. However, these have essentially been static analyses and hence ignored the influence of the kinematics. The aim of this work was to use an explicit finite element approach to simulate both the kinematics and the internal stresses within a single analysis. A simulation of a total knee joint replacement subjected to a single gait cycle within a knee wear simulator was performed and the results were compared with experimental data.The predicted kinematics were in close agreement with the experimental data. Various solution-dependent parameters were found to have little influence on the predicted kinematics. The predicted stresses were found to be dependent on the mesh density. This study has shown that an explicit finite element approach is capable of predicting the kinematics and the stresses within a single analysis at relatively low computational cost.  相似文献   

11.
A methodology was developed for determining the compressive properties of the supraspinatus tendon, based on finite element principles. Simplified three-dimensional models ure re reated based on anatomical thickness measurements of unloaded supraspinatus tendons over 15 points. The tendon material was characterized as a composite structure of' longitudinally arranged collagen fibers within an extrafibrillar matrix. The matrix was formulated as a hyperelastic material described by the Ogden form of the strain energy potential. The hyperelastic material parameters were parametrically manipulated until the analytical load-displacement results were similar to the results obtaizned from indentation testinrg. In the geometrically averaged tendon, the average ratio of experimental to theoretical maximum indentation displacement was 1.00 (SD: 0.01). The average normalization of residuals was 2.1 g (SD: 0.9 g). Therefjore, the compressive material properties of the supraspinatus tendo'n extrafibrillar matrix were adequately derived with a first-order hyperelastic formulation. The initial comnpressive elastic modulus ranged from 0.024 to 0.090 MPa over the tendon surface and increased nonlinearly with additional compression. Using these material properties, the stresses induced during acromional impingement can be analyzed.  相似文献   

12.
An appropriate method of application of the hip-joint force and stress analysis of the pelvic bone, in particular the acetabulum, is necessary to investigate the changes in load transfer due to implantation and to calculate the reference stimulus for bone remodelling simulations. The purpose of the study is to develop a realistic 3D finite element (FE) model of the hemi-pelvis and to assess stress and strain distribution during a gait cycle. The FE modelling approach of the pelvic bone was based on CT scan data and image segmentation of cortical and cancellous bone boundaries. Application of hip-joint force through an anatomical femoral head having a cartilage layer was found to be more appropriate than a perfectly spherical head, thereby leading to more accurate stress–strain distribution in the acetabulum. Within the acetabulum, equivalent strains varied between 0.1% and 0.7% strain in the cancellous bone. High compressive (15–30 MPa) and low tensile (0–5 MPa) stresses were generated within the acetabulum. The hip-joint force is predominantly transferred from the acetabulum through the lateral cortex to the sacroiliac joint and the pubic symphysis. The study is useful to understand the load transfer within the acetabulum and for further investigations on acetabular prosthesis.  相似文献   

13.
An apparatus to study the response of cultured endothelium to shear stress   总被引:6,自引:0,他引:6  
An apparatus which has been developed to study the response of cultured endothelial cells to a wide range of shear stress levels is described. Controlled laminar flow through a rectangular tube was used to generate fluid shear stress over a cell-lined coverslip comprising part of one wall of the tube. A finite element method was used to calculate shear stresses corresponding to cell position on the coverslip. Validity of the finite element analysis was demonstrated first by its ability to generate correctly velocity profiles and wall shear stresses for laminar flow in the entrance region between infinitely wide parallel plates (two-dimensional flow). The computer analysis also correctly predicted values for pressure difference between two points in the test region of the apparatus for the range of flow rates used in these experiments. These predictions thus supported the use of such an analysis for three-dimensional flow. This apparatus has been used in a series of experiments to confirm its utility for testing applications. In these studies, endothelial cells were exposed to shear stresses of 60 and 128 dynes/cm2. After 12 hr at 60 dynes/cm2, cells became aligned with their longitudinal axes parallel to the direction of flow. In contrast, cells exposed to 128 dynes/cm2 required 36 hr to achieve a similar reorientation. Interestingly, after 6 hr at 128 dynes/cm2, specimens passed through an intermediate phase in which cells were aligned perpendicular to flow direction. Because of its ease and use and the provided documentation of wall shear stress, this flow chamber should prove to be a valuable tool in endothelial research related to atherosclerosis.  相似文献   

14.
The present study reports on the finite element analysis (FEA) of the femoral head in a process of preparation for a program for the realistic simulation of correctional osteotomies of the proximal femur. While the material properties have been studied extensively, only few publications consider the influence of the cartilage layer geometry on FE stimulation of the hip joint. Various models of the femoral head with and without the cartilage layer are generated and analysed. On looking at the maximum surface stresses, we found a strong influence of the cartilage layer and the subchondral osseous layer on the magnitude of the von Mises equivalent stress. The model with an anatomically realistic cartilage layer and compact bone shows stresses of between 4 and 5.5 MPa, depending on the position of the joint, while the model with a concentric cartilage layer has a maximum von Mises stress of 0.8 MPa. Only on simulation of a "realistic" cartilage layer, with a maximum thickness at the "pole" and minimum thickness at the "equator" do the changes in stress distribution--determined by changes in the position of the femoral head--become visible. Owing to major artefacts and the inability to create a realistic cartilage layer, voxel-based models of the femur are not suitable for the simulation of the femoral head surface.  相似文献   

15.
Constrained acetabular liners are utilized to deal with the infrequent but devastating problem of recurrent dislocation. While an encouraging treatment of last resort, the clinical performance of contemporary constrained liners has been somewhat mixed. There are multiple factors contributing to this variability, one of which is the limited understanding of the intrinsic mechanical characteristics of these specialty devices. To address this issue, a three-dimensional, materially nonlinear, multi-surface contact finite element model of a representative constrained liner was created. The model was physically validated, and then used for parametric testing to explore the effects of individual design features. The model was exercised for both intra-operative assembly and lever-out dislocation. It was found that the coefficient of friction between the femoral head and the liner substantially affected both the force required to seat the femoral head into the liner during assembly, and the peak moment resisting dislocation (226% increase in assembly force for friction coefficients of 0.2 versus 0.0; 49% reduction in dislocation moment for friction coefficients of 0.013 versus 0.135). As expected, the cup opening radius also had a dominant effect on both maneuvers: decreasing the opening radius from 13.9 to 13.6 mm increased assembly force by 506 N and increased the dislocation moment by over 3.5 N-m, whereas the influence of other design parameters was much more modest.  相似文献   

16.
Total ankle replacement (TAR) designs have still several important issues to be addressed before the treatment becomes fully acceptable clinically. Very little is known about the performance, in terms of the contact pressures and kinematics of TAR when subjected to daily activities such as level gait. For this purpose, an explicit finite element model of a novel 3-component TAR was developed, which incorporated a previously validated mechanical model of the ankle ligament apparatus. The intermediate mobile polyethylene meniscal bearing was modelled as an elastic-plastic continuum while the articulating surfaces of the tibial and talar metal components as rigid bodies. Overall kinematics, contact pressures and ligament forces were analysed during passive, i.e. virtually unloaded, and active, i.e. stance phase of gait, conditions. Simulation of passive motion predicted similar kinematics as reported previously in an analytical four-bar linkage model. The meniscal bearing was observed to move 5.6 mm posteriorly during the simulated stance and the corresponding antero-posterior displacement of the talar component was 8.3 mm. The predicted pattern and the amount (10.6 degrees ) of internal-external rotation of the ankle complex were found to be in good agreement with corresponding in vivo measurements on normal ankles. A peak contact pressure of 16.8 MPa was observed, with majority of contact pressures below 10 MPa. For most ligaments, reaction forces remain within corresponding physiological ranges. A first realistic representation of the biomechanical behaviour of the human ankle when replaced by prosthetic joints is provided. The applied methodology can potentially be applied to other TAR designs.  相似文献   

17.
The problem of modelling stresses incurred at the finger joints is critical to the design of durable joint replacements in the hand. The goal of this study was to characterise the forces and stresses at the finger and thumb joints occurring during activities such as typing at a keyboard, playing piano, gripping a pen, carrying a weight and opening a jar. The metacarpal and proximal phalanx were modelled using a COMSOL-based finite element analysis. Analysis of these activities indicates that joint forces in excess of 100 N may be common at the metacarpophalangeal joint (MCP) due to carrying objects such as groceries or while opening jars. The model predicted that stresses in excess of 2 MPa, similar to stresses at the hip, occur at the MCP with the properties of cancellous bone playing a significant role in the magnitude and distribution of stress.  相似文献   

18.
Dislocation of the artificial joint is a serious complication of total hip replacement. Various factors with an influence on dislocation stability were determined clinically. Our goal was to develop a method for evaluating experimentally the parameters implant design, position and the load situation for their influence on joint stability. With the newly developed testing device the range of motion to impingement and to dislocation can be determined at different implant positions. In addition, the rotational moments on subluxation, i.e. the "levering out" of the femoral head, can be determined. By way of example several hip implants were examined during movements associated with dislocation, e.g. (internal-)rotation in 90 degrees flexion and 0 degrees adduction as well as with (external-)rotation in combination with 10 degrees extension and 15 degrees adduction. Irrespective of implant design and position, the following movement phases can be differentiated: undisturbed motion, impingement, subluxation and, finally, complete dislocation of the head. On the basis of the range of motion of the specific phases, the moments occurring and the direction of dislocation, different implant systems can be compared. In this study the influence of the head diameter on the dislocation stability of the hip endoprosthesis is shown. With the aid of the model presented herein, a data set showing the most favourable and/or most dislocation stable implant position can be acquired for different combinations of the implant components. Additionally, useful information for implant design can be deduced and applied to new developments and/or modifications of existing implant components.  相似文献   

19.
The problem of modelling stresses incurred at the finger joints is critical to the design of durable joint replacements in the hand. The goal of this study was to characterise the forces and stresses at the finger and thumb joints occurring during activities such as typing at a keyboard, playing piano, gripping a pen, carrying a weight and opening a jar. The metacarpal and proximal phalanx were modelled using a COMSOL-based finite element analysis. Analysis of these activities indicates that joint forces in excess of 100 N may be common at the metacarpophalangeal joint (MCP) due to carrying objects such as groceries or while opening jars. The model predicted that stresses in excess of 2 MPa, similar to stresses at the hip, occur at the MCP with the properties of cancellous bone playing a significant role in the magnitude and distribution of stress.  相似文献   

20.
In recent years metal-free ceramic systems have become increasingly popular in dental practice because of their superior aesthetics, chemical durability and biocompatibility. Recently, manufacturers have proposed new dental ceramic systems that are advertised as being suitable for posterior fixed partial dentures (FPDs). Reports indicate that some of these systems have exhibited poor clinical performance. The objective of this study was to use the viscoelastic option of the ANSYS finite element program to calculate residual stresses in an all-ceramic FPD for four ceramic-ceramic combinations. A three-dimensional finite element model of the FPD was constructed from digitized scanning data and calculations were performed for four systems: (1) IPS Empress 2, a glass-veneering material, and Empress 2 core ceramic; (2) IPS Eris a low fusing fluorapatite-containing glass-veneering ceramic, and Empress 2 core ceramic; (3) IPS Empress 2 veneer and an experimental lithium-disilicate-based core ceramic; and (4) IPS Eris and an experimental lithium-disilicate-based core ceramic. The maximum residual tensile stresses in the veneer layer for these combinations are as follows: (1) 77 MPa, (2) 108 MPa, (3) 79 MPa, and (4) 100 MPa. These stresses are relatively high compared to the flexural strengths of these materials. In all cases, the maximum residual tensile stresses in the core frameworks were well below the flexural strengths of these materials. We conclude that the high residual tensile stresses in all-ceramic FPDs with a layering ceramic may place these systems in jeopardy of failure under occlusal loading in the oral cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号