共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The tRNA of most organisms contain modified adenines called cytokinins. Situated next to the anticodon, they have been shown to influence translational fidelity and efficiency. The enzyme that synthesizes cytokinins on pre-tRNA, tRNA isopentenyltransferase (EC 2.5.1.8), has been studied in micro-organisms like Escherichia coli and Saccharomyces cerevisiae, and the corresponding genes have been cloned. We here report the first cloning and functional characterization of a homologous gene from a plant, Arabidopsis thaliana. Expression in S. cerevisiae showed that the gene can complement the anti-suppressor phenotype of a mutant that lacks MOD5, the intrinsic tRNA isopentenyltransferase gene. This was accompanied by the reintroduction of isopentenyladenosine in the tRNA. The Arabidopsis gene is constitutively expressed in seedling tissues. 相似文献
5.
6.
《Plant Physiology and Biochemistry》2003,41(5):407-416
The preprotein translocase of the outer mitochondrial membrane (also called TOM complex) from Arabidopsis thaliana was characterized by Blue-native gel electrophoresis (BN-PAGE) and Electrospray Tandem Mass Spectrometry (ESI-MS/MS). BN-PAGE allows to prepare a very stable 390 kDa complex that includes six different protein types: the 34 kDa translocation pore TOM40, the 21/23 kDa preprotein receptor TOM20, the small TOM component TOM7 and three further subunits of 10, 6.3 and 6.0 kDa. Primary structures of all TOM subunits were elucidated. The 10 kDa subunit represents a truncated version of the TOM22 preprotein receptor and the two 6 kDa proteins represent subunits possibly homologous to fungal TOM6 and TOM5, although sequence conservation is at the borderline of significance. TOM40, TOM7 and one or both of the 6 kDa subunits form a subcomplex of about 100 kDa. The six TOM proteins from Arabidopsis are encoded by 12 genes, at least 11 of which are expressed. While the subunit composition of the TOM complex from fungi, animals and plants is remarkably conserved, the domain structure of individual TOM proteins differs, e.g. acidic domains in TOM22 and the 6 kDa TOM subunits from Arabidopsis are absent. The domain structure of the Arabidopsis TOM complex does not support the so-called ‘acid chain hypothesis’, which explains the translocation of proteins across the outer mitochondrial membrane of mitochondria by the binding of preproteins to acidic protein domains within the TOM complex. Functional implications are discussed. 相似文献
7.
8.
Ward JM 《Bioinformatics (Oxford, England)》2001,17(6):560-563
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these. 相似文献
9.
Plastidial degradation of transitory starch yields mainly maltose and glucose. Following the export into the cytosol, maltose acts as donor for a glucosyl transfer to cytosolic heteroglycans as mediated by a cytosolic transglucosidase (DPE2; EC 2.4.1.25) and the second glucosyl residue is liberated as glucose. The cytosolic phosphorylase (Pho2/PHS2; EC 2.4.1.1) also interacts with heteroglycans using the same intramolecular sites as DPE2. Thus, the two glucosyl transferases interconnect the cytosolic pools of glucose and glucose 1-phosphate. Due to the complex monosaccharide pattern, other heteroglycan-interacting proteins (HIPs) are expected to exist.Identification of those proteins was approached by using two types of affinity chromatography. Heteroglycans from leaves of Arabidopsis thaliana (Col-0) covalently bound to Sepharose served as ligands that were reacted with a complex mixture of buffer-soluble proteins from Arabidopsis leaves. Binding proteins were eluted by sodium chloride. For identification, SDS-PAGE, tryptic digestion and MALDI-TOF analyses were applied. A strongly interacting polypeptide (approximately 40 kDa; designated as HIP1.3) was observed as product of locus At1g09340. Arabidopsis mutants deficient in HIP1.3 were reduced in growth and contained heteroglycans displaying an altered monosaccharide pattern. Wild type plants express HIP1.3 most strongly in leaves. As revealed by immuno fluorescence, HIP1.3 is located in the cytosol of mesophyll cells but mostly associated with the cytosolic surface of the chloroplast envelope membranes. In an HIP1.3-deficient mutant the immunosignal was undetectable. Metabolic profiles from leaves of this mutant and wild type plants as well were determined by GC-MS. As compared to the wild type control, more than ten metabolites, such as ascorbic acid, fructose, fructose bisphosphate, glucose, glycine, were elevated in darkness but decreased in the light. Although the biochemical function of HIP1.3 has not yet been elucidated, it is likely to possess an important function in the central carbon metabolism of higher plants. 相似文献
10.
A novel MYB-like gene (AtMYB103) was isolated from a genomic library of Arabidopsis. Plants transgenic for chimeric AtMYB103 promoter/GUS genes expressed the enzyme in early anthers. In situ hybridization of flower sections showed a high level of AtMYB103 mRNA in the tapetum and middle layer of developing anthers. 相似文献
11.
Phenylalanine, tyrosine, and tryptophan have a dual biosynthetic role in plants; they are required for protein synthesis and are also precursors to a number of aromatic secondary metabolites critical to normal development and stress responses. Whereas much has been learned in recent years about the genetic control of tryptophan biosynthesis in Arabidopsis and other plants, relatively little is known about the genetic regulation of phenylalanine and tyrosine synthesis. We have isolated, characterized and determined the expression of Arabidopsis thaliana genes encoding chorismate mutase, the enzyme catalyzing the first committed step in phenylalanine and tyrosine synthesis. Three independent Arabidopsis chorismate mutase cDNAs were isolated by functional complementation of a Saccharomyces cerevisiae mutation. Two of these cDNAs have been reported independently (Eberhard et al., 1993. FEBS 334, 233-236; Eberhard et al., 1996. Plant J. 10, 815-821), but the third (designated CM-3) represents a novel gene. The different organ-specific expression patterns of these cDNAs, their regulation in response to pathogen infiltration, as well as the different enzymatic characteristics of the proteins they encode are also described. Together, these data suggest that each isoform may play a distinct physiological role in coordinating chorismate mutase activity with developmental and environmental signals. 相似文献
12.
13.
14.
A chlorophyll synthetase gene from Arabidopsis thaliana 总被引:1,自引:0,他引:1
P. Gaubier H. -J. Wu M. Laudié M. Delseny F. Grellet 《Molecular genetics and genomics : MGG》1995,249(1):58-64
15.
16.
17.
Yuuichi Soeno Yuji Taya Taras Stasyk Lukas A. Huber Takaaki Aoba Alexander Hüttenhofer 《RNA (New York, N.Y.)》2010,16(7):1293-1300
Small nucleolar RNAs (snoRNAs) guide nucleotide modifications within ribosomal RNAs or spliceosomal RNAs by base-pairing to complementary regions within their RNA targets. The brain-specific snoRNA MBII-52 lacks such a complementarity to rRNAs or snRNAs, but instead has been reported to target the serotonin receptor 2C pre-mRNA, thereby regulating pre-mRNA editing and/or alternative splicing. To understand how the MBII-52 snoRNA might be involved in these regulatory processes, we isolated the MBII-52 snoRNP from total mouse brain by an antisense RNA affinity purification approach. Surprisingly, by mass spectrometry we identified 17 novel candidates for MBII-52 snoRNA binding proteins, which previously had not been reported to be associated with canonical snoRNAs. Among these, Nucleolin and ELAVL1 proteins were confirmed to independently and directly interact with the MBII-52 snoRNA by coimmunoprecipitation. Our findings suggest that the MBII-52 snoRNA assembles into novel RNA-protein complexes, distinct from canonical snoRNPs. 相似文献
18.
Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana 总被引:21,自引:0,他引:21
The cdc2 gene product (p34cdc2) has been thought to play a central role in control of the mitotic cell cycle of yeasts and animals. To approach an understanding of the cell-cycle-control system in higher plants, we isolated, from an Arabidopsis thaliana cDNA library, two clones (CDC2a and CDC2b) similar to the Schizosaccharomyces pombe cdc2 gene. Genomic Southern-blot analysis with the CDC2a and CDC2b cDNA probes suggested that the A. thaliana genome contains several additional cdc2-like genes, which together with the CDC2a and CDC2b genes may constitute a CDC2 gene family. The CDC2a cDNA expressed in Sc. pombe corrected the elongated morphology, caused by the temperature-sensitive cdc2-33 mutation, to the normal shapes, indicating that the A. thaliana CDC2a gene product resembles Sc. pombe p34cdc2 functionally as well as structurally. These results support the view that the cell cycle of higher plants is controlled by an analogue of a p34cdc2-centered regulatory system like that of yeasts and animals. 相似文献
19.
A new homeobox-leucine zipper gene from Arabidopsis thaliana 总被引:3,自引:0,他引:3
Jim Mattsson Eva Söderman Marie Svenson Chumpol Borkird Peter Engström 《Plant molecular biology》1992,18(5):1019-1022
We have isolated a homeobox-containing gene from Arabidopsis thaliana using a degenerate oligonucleotide probe corresponding to the most conserved region of the homeodomain. This strategy has been used previously to isolate homeobox-containing genes from Caenorhabditis, and recently from A. thaliana. The Arabidopsis genes have an unusual structure in that they have a leucine zipper motif adjacent to the carboxy terminal region of the homeo domain, a feature not found in homeobox-containing genes isolated from animals. We report the isolation and primary structure of a new member of this Arabidopsis homeobox-leucine zipper gene family. This new member has the homeodomain and leucine-zipper motif similar to the two genes previously identified, but differs from these genes in the part corresponding to the carboxy terminus of the polypeptide, as well as in size and isoelectric point of the protein. 相似文献
20.
《Genomics》2019,111(6):1668-1675
Long non-coding RNAs (lncRNAs) are the “dark matters”involved in gene regulation with complex mechanisms. However, the functions of most lncRNAs remain to be determined. Our previous work revealed a massive number of degradome-supported cleavage signatures on Arabidopsis lncRNAs. Some of them have been confirmed associated with miRNAs-like sRNAs production, while others without long stem structure remain unexplored. A systematical search for phasiRNAs generating ability of these lncRNAs was conducted. Eight novel small RNA triggered lncRNA-phasiRNA pathways were discovered and three of them were found to be conserved in Arabidopsis, Oryza sativa, Glycine max and Gossypium hirsutum. Besides, Five novel ta-siRNAs derived from these lncRNAs were further identified to be involved in the regulation of plant development, stress responses and aromatic amino acids synthesis. These results substantially expanded the gene regulation mechanisms of lncRNAs. 相似文献