首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Escherichia coli tmRNA (transfer-messenger RNA) facilitates a trans-translation reaction in which a stalled ribosome on a terminatorless mRNA switches to an internal coding sequence in tmRNA, resulting in the addition of an 11 amino acid residue tag to the truncated protein that is a signal for degradation and in recycling of the stalled ribosome. A tmRNA secondary structure model with a partial tRNA-like structure and several pseudoknots was recently proposed. This report describes an extensive mutational analysis of one predicted pseudoknot (PK1) located upstream of the E. coli tmRNA tag-encoded sequence. Both the extent of aminoacylation and the alanine incorporation into the tag sequence, reflecting the two functions of tmRNA, were measured in vitro for all the engineered RNA variants. To characterize structure-function relationships for the tmRNA mutants, their solution conformations were investigated by using structural probes and by measuring the temperature dependence of their UV absorbance. This analysis strongly supports the presence of a pseudoknot in E. coli tmRNA, and its involvement in trans-translation. Mutations disrupting the first stem of the pseudoknot inactivate function and promote stable alternative conformations. Mutations of the second stem of the pseudoknot also effect both functions. The nucleotide stretch between the two stems (loop 2) is required for efficient trans-translation, and nucleotides at positions 61 and 62 must be guanine residues. The probing data suggest the presence of magnesium ion(s) interacting with loop 2. The loops crossing the minor and major grooves can be mutated without significant effects on tmRNA function. Nucleotide insertion or deletion between the pseudoknot and the coding sequence do not change the mRNA frame of the tag-peptide sequence, suggesting that the pseudoknot structure is not a determinant for the resumption of translation.  相似文献   

2.
The tmRNA Website: invasion by an intron   总被引:6,自引:2,他引:4       下载免费PDF全文
tmRNA (also known as 10Sa RNA or SsrA) plays a central role in an unusual mode of translation, whereby a stalled ribosome switches from a problematic mRNA to a short reading frame within tmRNA during translation of a single polypeptide chain. Research on the mechanism, structure and biology of tmRNA is served by the tmRNA Website, a collection of sequences for tmRNA and the encoded proteolysis-inducing peptide tags, alignments, careful documentation and other information; the URL is http://www.indiana.edu/~tmrna. Four pseudoknots are usually present in each tmRNA, so the database is rich with information on pseudoknot variability. Since last year it has doubled (227 tmRNA sequences as of September 2001), a sequence alignment for the tmRNA cofactor SmpB has been included, and genomic data for Clostridium botulinum has revealed a group I (subgroup IA3) intron interrupting the tmRNA T-loop.  相似文献   

3.
Bordeau V  Felden B 《Biochimie》2002,84(8):723-729
tmRNA (10Sa RNA, ssrA) acts to rescue stalled bacterial ribosomes while encoding a peptide tag added trans-translationally to the nascent peptide, targeting it for proteolysis. Ribosomal protein S1 is required for tmRNA binding to isolated and poly U-programmed ribosomes. Mobility assays on native gels indicate that the binding curves of both recombinant and purified proteins S1 from E. coli is biphasic with apparent binding constants of approximately 90 and approximately 300 nM, respectively, suggesting that more than one protein interacts with tmRNA. Structural probing of native tmRNA in the presence and absence of the purified protein suggest that when S1 binds, tmRNA undergoes a significant conformational change. In the presence of the protein, nucleotides from tmRNA with enhanced (H2, H3, PK1, PK2, PK4, in and around the first triplet to be translated), or decreased (H5 and PK2), reactivity towards a probe specific for RNA single-strands are scattered throughout the molecule, with the exception of the tRNA-like domain that may be dispensable for the interaction. Converging experimental evidence suggests that ribosomal protein S1 binds to pseudoknot PK2. Previous structural studies of tmRNA in solution have revealed several discrepancies between the probing data and the phylogeny, and most of these are reconciled when analyzing tmRNA structure in complex with the protein(s). Ribosomal protein(s) S1 is proposed to set tmRNA in the mRNA mode, relieving strains that may develop when translating a looped mRNA.  相似文献   

4.
Two-piece tmRNA in cyanobacteria and its structural analysis   总被引:3,自引:1,他引:2  
tmRNA acts to rescue stalled bacterial ribosomes while encoding a peptide tag added trans-translationally to the nascent peptide, targeting it for proteolysis. The permuted gene structure found in a group of cyanobacteria is shown to produce a two-piece mature tmRNA, as had been observed previously for the independently permuted gene of α-proteobacteria. The pieces have been mapped onto the gene sequence and aligned for the permuted cyanobacterial tmRNA sequences, including four novel sequences. Structural probing and base pair co-variations support a secondary structure model in which two pairings in the tRNA-like domain hold the two pieces together, and the coding piece bearing the tag reading frame additionally contains a single transient pseudoknot and three other stem–loops. This represents a dramatic reduction in pseudoknot number from the five present in one-piece cyanobacterial tmRNA.  相似文献   

5.
tmRNA (transfer messenger RNA) is a unique molecule used by all bacteria to rescue stalled ribosomes and to mark unfinished peptides with a specific degradation signal. tmRNA is recruited by arrested ribosomes in which it facilitates the translational switch from cellular mRNA to the mRNA part of tmRNA. Small protein B (SmpB) is a key partner for the trans-translation activity of tmRNA both in vivo and in vitro. It was shown that SmpB acts at the initiation step of the trans-translation process by facilitating tmRNA aminoacylation and binding to the ribosome. Little is known about the subsequent steps of trans-translation. Here we demonstrated the first example of an investigation of tmRNA.ribosome complexes at different stages of trans-translation. Our results show that the structural element at the position of tmRNA pseudoknot 3 remains intact during the translation of the mRNA module of tmRNA and that it is localized on the surface of the ribosome. At least one SmpB molecule remains bound to a ribosome.tmRNA complex isolated from the cell when translation is blocked at different positions within the mRNA part of tmRNA.  相似文献   

6.
tmRNA rescues stalled ribosomes in eubacteria by forcing the ribosome to abandon its mRNA template and resume translation with tmRNA itself as a template. Pseudoknot 1 (pk1), immediately upstream of this coding region in tmRNA, is a structural element that is considered essential for tmRNA function based on the analysis of pk1 mutants in vitro. pk1 binds near the ribosomal decoding site and may make base-specific contacts with tmRNA ligands. To study pk1 structure and function in vivo, we have developed a genetic selection that ties the life of Escherichia coli cells to tmRNA activity. Mutation of pk1 at 20% per base and selection for tmRNA activity yielded sequences that retain the same pseudoknot fold. In contrast, selection of active mutants from 10(6) completely random sequences identified hairpin structures that functionally replace pk1. Rational design of a hairpin with increased stability using an unrelated sequence yielded a tmRNA mutant with nearly wild-type activity. We conclude that the role of pk1 in tmRNA function is purely structural and that it can be replaced with a variety of hairpin structures. Our results demonstrate that in the study of functional RNAs, the inactivity of a mutant designed to destroy a given structure should not be interpreted as proof that the structure is necessary for RNA function. Such mutations may only destabilize a global fold that could be formed equally well by an entirely different, stable structure.  相似文献   

7.
Small protein B (SmpB) is a requisite component of the transfer messenger RNA (tmRNA)-mediated bacterial translational quality control system known as trans-translation. The initial binding of tmRNA and its subsequent accommodation into the ribosomal A-site are activities intimately linked to SmpB protein function. From a mechanistic perspective, two key unanswered questions that require further investigation are: 1) what constitutes a stalled ribosome recognition complex and 2) does SmpB pre-bind ribosomes to recruit tmRNA. We have assessed, both in vivo and in vitro, the nature and stability of free SmpB interactions with stalled ribosomes and examined whether these interactions are functionally relevant. We present evidence to demonstrate that interaction of free SmpB with ribosomes is salt sensitive and significantly more labile than interaction of the SmpB.tmRNA complex with ribosomes. Upon dissociation of 70 S ribosomes SmpB partitions primarily with tmRNA rather than ribosomal subunits. This finding is consistent with biochemical and structural data demonstrating that tmRNA is the high-affinity binding partner of SmpB. Moreover, we show that under normal physiological conditions roughly similar numbers of SmpB and tmRNA molecules are present in cells. Our investigations also reveal that upon induction of a nonstop mRNA, SmpB is enriched in stalled ribosome fractions only in the presence of tmRNA. Based on these findings, we conclude that SmpB does not pre-bind stalled ribosome and that functional SmpB-stalled ribosome interactions require tmRNA. We propose that a 1:1:1 complex of SmpB.tmRNA.EF-Tu(GTP) recognizes and binds a stalled ribosome to initiate trans-translation.  相似文献   

8.
Descent of a split RNA   总被引:6,自引:1,他引:5  
tmRNA is found in the usual one-piece form in most cyanobacteria, but a small clade has an unusual two-piece form, resulting from processing of a circularly permuted precursor RNA. Here, the secondary structure of the cyanobacterial one-piece tmRNA is established by phylogenetic sequence comparison; it deviates from most tmRNAs in having an extra (fifth) pseudoknot and a branched structure at the end of the tag reading frame. Patterns of sequence conservation between the two cyanobacterial tmRNA types suggest particular events in the evolution of the two-piece form. A simple gene permutation model of tandem duplication followed by loss of the outermost segments appears inadequate. An additional rearrangement is proposed, in which a structure impaired by deletion was regenerated at the expense of a neighboring structure.  相似文献   

9.
Emerging views on tmRNA-mediated protein tagging and ribosome rescue   总被引:9,自引:0,他引:9  
Transfer-messenger RNA (tmRNA), also known as SsrA or 10Sa RNA, is a bacterial ribonucleic acid that recycles 70S ribosomes stalled on problematic messenger RNAs (mRNAs) and also contributes to the degradation of incompletely synthesized peptides. tmRNA acts initially as transfer RNA (tRNA), being aminoacylated at its 3'-end by alanyl-tRNA synthetase, to add alanine to the stalled polypeptide chain. Resumption of translation ensues not on the mRNA on which the ribosomes were stalled but at an internal position in tmRNA. Termination soon occurs, tmRNA recruiting the appropriate termination factors allowing the release of the tagged protein that is subsequently recognized and degraded by specific cytoplasmic and periplasmic proteases, and permits ribosome recycling. Recent data suggest that tmRNA tags bacterial proteins in three other instances; when ribosomes stall at internal sites; during 'readthrough' of canonical termination codons; and when ribosomes are at the termination codon of intact messages. The importance of bacterial tmRNAs for survival, growth under stress, and pathogenesis is also discussed. Recent in vivo and in vitro studies have identified novel ligands of tmRNA. Based on the available experimental evidences, an updated model of tmRNA mediated protein tagging and ribosome rescue in bacteria is presented.  相似文献   

10.
Barends S  Wower J  Kraal B 《Biochemistry》2000,39(10):2652-2658
Aminoacylation and transportation of tmRNA to stalled ribosomes constitute prerequisite steps for trans-translation, a process facilitating the release of stalled ribosomes from 3' ends of truncated mRNAs and the degradation of incompletely synthesized proteins. Kinetic analysis of the aminoacylation of tmRNA indicates that tmRNA has both a lower affinity and a lower turnover number than cognate tRNA(Ala) for alanyl-tRNA synthetase, resulting in a 75-fold lower k(cat)/K(M) value. The association rate constant of Ala-tmRNA for elongation factor Tu in complex with GTP is about 150-fold lower than that of Ala-tRNA(Ala), whereas its dissocation rate constant is about 5-fold lower. These observations can be interpreted to suggest that additional factors facilitate tmRNA binding to ribosomes.  相似文献   

11.
Ribosomes stalled on problematic mRNAs in bacterial cells can be rescued by transfer-messenger RNA (tmRNA), its helper protein (small protein B, SmpB), and elongation factor Tu (EF-Tu) through a mechanism called trans-translation. In this work we used lead(II) footprinting to probe the interactions of tmRNA with SmpB and other components of the translation machinery at different steps of the trans-translation cycle. Ribosomes with a short nascent peptide stalled on a truncated mRNA were reacted with Ala-tmRNA*EF-Tu*GTP, SmpB, and other translation components to initiate and execute trans-translation. Free tmRNA was probed with lead(II) acetate with and without SmpB, and ribosome bound tmRNA was probed in one of four different trans-translation states stabilized by antibiotic addition or selective exclusion of translation components. For comparison, we also analyzed lead(II) cleavage patterns of tmRNA in vivo in a wild-type as well as in an SmpB-deficient Escherichia coli strain. We observed some specific cleavages/protections in tmRNA for the individual steps of trans-translation, but the overall tmRNA conformation appeared to be similar in the stages analyzed. Our findings suggest that, in vivo, a dominant fraction of tmRNA is in complex with SmpB and that, in vitro, SmpB remains tmRNA bound at the initial steps of trans-translation.  相似文献   

12.
In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.  相似文献   

13.
Phylogenetic analysis of tmRNA secondary structure.   总被引:10,自引:3,他引:7       下载免费PDF全文
The bacterial tmRNA acts with dual tRNA-like and mRNA-like character to tag incomplete translation products for degradation. Comparative analysis of 17 tmRNA genes (including eight new sequences) has allowed us to deduce conserved features of the tmRNA secondary structure. Except in a segment that includes the first codon of the tag reading frame, tmRNA is highly structured, with four pseudoknots and a total of 11 conserved base pairing regions. The previously identified tRNA minihelix structure is connected by a long base paired region to a large structured domain composed of a pseudoknot, followed by the tag reading frame and a string of three rather similar pseudoknots. The conservation of numerous structural elements among diverse eubacterial species indicates that these elements have important function beyond simply forming an endonuclease-resistant link between the reading frame and the tRNA-like domain.  相似文献   

14.
15.
Transfer-messenger RNA (tmRNA) acts first as a tRNA and then as an mRNA template to rescue stalled ribosomes in eubacteria. Together with its protein partner, SmpB (small protein B), tmRNA enters stalled ribosomes and transfers an Ala residue to the growing polypeptide chain. A remarkable step then occurs: the ribosome leaves the stalled mRNA and resumes translation using tmRNA as a template, adding a short peptide tag that destines the aborted protein for destruction. Exactly how the ribosome switches templates, resuming translation on tmRNA in the proper reading frame, remains unknown. Within the tmRNA sequence itself, five nucleotides (U85AGUC) immediately upstream of the first codon appear to direct frame selection. In particular, mutation of the conserved A86 results in severe loss of function both in vitro and in vivo. The A86C mutation causes translation to resume exclusively in the + 1 frame. Several candidate binding partners for this upstream sequence have been identified in vitro. Using a genetic selection for tmRNA activity in Escherichia coli, we identified mutations in the SmpB protein that restore the function of A86C tmRNA in vivo. The SmpB mutants increase tagging in the normal reading frame and reduce tagging in the + 1 frame. These results demonstrate that SmpB is functionally linked with the sequence upstream of the tmRNA template; both contribute to reading frame selection on tmRNA.  相似文献   

16.
The unique transfer-messenger RNA (tmRNA) molecule has been identified in all bacterial species examined, suggesting that its action confers an important survival advantage to bacteria. Acting both as a tRNA and an mRNA, in a process known as trans-translation, tmRNA adds a short peptide tag to undesirable proteins. Trans-translation plays at least two physiological roles: removing ribosomes stalled upon mRNA, and targeting the resulting truncated proteins for degradation by proteases. The first of these roles is required for all known activities of tmRNA, whereas the second may be dispensed with in most cases with little biological effect. However, tmRNA-targeted proteolysis may be important for fine-tuning expression of certain genes by altering the concentration of regulatory proteins. Here, we review recent literature that addresses the biological functions of tmRNA.  相似文献   

17.
Saguy M  Gillet R  Metzinger L  Felden B 《Biochimie》2005,87(9-10):897-903
Translation is an efficient and accurate mechanism, needing thorough systems of control-quality to ensure the correspondence between the information carried by the messenger RNA (mRNA) and the newly synthesized protein. Among them, trans-translation ensures delivering of stalled ribosomes when translation occurs on truncated mRNAs in bacteria, followed by the degradation of the incomplete nascent proteins. This process requires transfer-messenger RNA (tmRNA), an original molecule acting as both a tRNA and an mRNA. tmRNA first enters the decoding site of stuck ribosomes and, despite the lack of any codon-anticodon interaction, acts as a tRNA by transferring its alanine to the incomplete protein. Translation then switches to a small internal coding sequence (mRNA domain), which encodes a tag directing the incomplete protein towards degradation. Although playing a central role during trans-translation, tmRNA function depends on associated proteins. Genetic, biochemical and recent structural data are starting to unravel how the process takes place, by involving three main protein partners. Small protein B (SmpB) interacts with the tRNA-like domain (TLD) of tmRNA and is indispensable and specific to the process. Elongation factor Tu (EF-Tu) binds simultaneously the TLD and brings aminoacylated tmRNA to the ribosome, as for canonical tRNAs. Ribosomal protein S1 forms complexes with tmRNA, facilitating its recruitment by the stalled ribosomes. The chronology of events, however, is poorly understood and recent data shed light on the functions attributed to the proteins involved in trans-translation. This review focuses on the puzzling relationship that tmRNA has with these three protein ligands, putting forward trans-translation as a highly dynamical process.  相似文献   

18.
Transfer-messenger RNA (tmRNA) is a unique molecule that combines properties from both tRNA and mRNA, and facilitates a novel translation reaction termed trans -translation. According to phylogenetic sequence analysis among various bacteria and chemical probing analysis, the secondary structure of the 350-400 nt RNA is commonly characterized by a tRNA-like structure, and four pseudoknots with different sizes. A mutational analysis using a number of Escherichia coli tmRNA variants as well as a chemical probing analysis has recently demonstrated not only the presence of the smallest pseudoknot, PK1, upstream of the internal coding region, but also its direct implication in trans -translation. Here, NMR methods were used to investigate the structure of the 31 nt pseudoknot PK1 and its 11 mutants in which nucleotide substitutions are introduced into each of two stems or the linking loops. NMR results provide evidence that the PK1 RNA is folded into a pseudoknot structure in the presence of Mg(2+). Imino proton resonances were observed consistent with formation of two helical stem regions and these stems stacked to each other as often seen in pseudoknot structures, in spite of the existence of three intervening nucleo-tides, loop 3, between the stems. Structural instability of the pseudoknot structure, even in the presence of Mg(2+), was found in the PK1 mutants except in the loop 3 mutants which still maintained the pseudoknot folding. These results together with their biological activities indicate that trans -translation requires the pseudoknot structure stabilized by Mg(2+)and specific residues G61 and G62 in loop 3.  相似文献   

19.
To rescue stalled ribosomes, eubacteria employ a molecule, transfer messenger RNA (tmRNA), which functions both as a tRNA and as an mRNA. With the help of small protein B (SmpB), tmRNA restarts protein synthesis and adds by the trans-translation mechanism a peptide tag to the stalled protein to target it for destruction by cellular proteases. Here, the cellular location and expression of endogenous SmpB were monitored in vivo. We report that SmpB is associated with 70S ribosomes and not in the soluble fraction, independently of the presence of tmRNA. In vitro, SmpB that is pre-bound to a stalled ribosome can trigger initiation of trans-translation. Our results demonstrate the existence of a novel pathway for the entry of tmRNA to the ribosome and for the trans-transfer of a nascent peptide chain from peptidyl-tRNA to charged tmRNA.  相似文献   

20.
tmRNA, through its tRNA and mRNA properties, adds short peptide tags to abnormal proteins, targeting these proteins for proteolytic degradation. Although the conservation of tmRNA throughout the bacterial kingdom suggests that it must provide a strong selective advantage, it has not been shown to be essential for any bacterium. We report that tmRNA is essential in Neisseria gonorrhoeae. Although tagging per se appears to be required for gonococcal viability, tagging for proteolysis does not. This suggests that the essential roles of tmRNA in N.gonorrhoeae may include resolving stalled translation complexes and/or preventing depletion of free ribosomes. Although derivatives of N.gonorrhoeae expressing Escherichia coli tmRNA as their sole tmRNA were isolated, they appear to form colonies only after acquiring an extragenic suppressor(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号