首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keightley PD 《Genetics》2012,190(2):295-304
The human mutation rate per nucleotide site per generation (μ) can be estimated from data on mutation rates at loci causing Mendelian genetic disease, by comparing putatively neutrally evolving nucleotide sequences between humans and chimpanzees and by comparing the genome sequences of relatives. Direct estimates from genome sequencing of relatives suggest that μ is about 1.1 × 10(-8), which is about twofold lower than estimates based on the human-chimp divergence. This implies that an average of ~70 new mutations arise in the human diploid genome per generation. Most of these mutations are paternal in origin, but the male:female mutation rate ratio is currently uncertain and might vary even among individuals within a population. On the basis of a method proposed by Kondrashov and Crow, the genome-wide deleterious mutation rate (U) can be estimated from the product of the number of nucleotide sites in the genome, μ, and the mean selective constraint per site. Although the presence of many weakly selected mutations in human noncoding DNA makes this approach somewhat problematic, estimates are U ≈ 2.2 for the whole diploid genome per generation and 0.35 for mutations that change an amino acid of a protein-coding gene. A genome-wide deleterious mutation rate of 2.2 seems higher than humans could tolerate if natural selection is "hard," but could be tolerated if selection acts on relative fitness differences between individuals or if there is synergistic epistasis. I argue that in the foreseeable future, an accumulation of new deleterious mutations is unlikely to lead to a detectable decline in fitness of human populations.  相似文献   

2.
Healthy males are likely to have higher mating success than unhealthy males because of differential expression of condition‐dependent traits such as mate searching intensity, fighting ability, display vigor, and some types of exaggerated morphological characters. We therefore expect that most new mutations that are deleterious for overall fitness may also be deleterious for male mating success. From this perspective, sexual selection is not limited to influencing those genes directly involved in exaggerated morphological traits but rather affects most, if not all, genes in the genome. If true, sexual selection can be an important force acting to reduce the frequency of deleterious mutations and, as a result, mutation load. We review the literature and find various forms of indirect evidence that sexual selection helps to eliminate deleterious mutations. However, direct evidence is scant, and there are almost no data available to address a key issue: is selection in males stronger than selection in females? In addition, the total effect of sexual selection on mutation load is complicated by possible increases in mutation rate that may be attributable to sexual selection. Finally, sexual selection affects population fitness not only through mutation load but also through sexual conflict, making it difficult to empirically measure how sexual selection affects load. Several lines of enquiry are suggested to better fill large gaps in our understanding of sexual selection and its effect on genetic load.  相似文献   

3.
A pattern of male-biased mutation has been found in a wide range of species. The standard explanation for this bias is that there are greater numbers of mitotic cell divisions in the history of the average sperm, compared to the average egg, and that mutations typically result from errors made during replication. However, this fails to provide an ultimate evolutionary explanation for why the male germline would tolerate more mutations that are typically deleterious. One possibility is that if there is a tradeoff between producing large numbers of sperm and expending energetic resources in maintaining a lower mutation rate, sperm competition would select for males that produce larger numbers of sperm despite a higher resulting mutation rate. Here I describe a model that jointly considers the fitness consequences of deleterious mutation and mating success in the face of sperm competition. I show that a moderate level of sperm competition can account for the observation that the male germline tolerates a higher mutation rate than the female germline.  相似文献   

4.
Despite the obvious efficiencies of many forms of asexual reproduction, sexual reproduction abounds. Asexual species, for the most part, are relatively short-lived offshoots of sexual ancestors. From the nineteenth century, it has been recognized that, since there is no obvious advantage to the individuals involved, the advantages of sexual reproduction must be evolutionary. Furthermore, the advantage must be substantial; for example, producing males entails a two-fold cost, compared to dispensing with them and reproducing by parthenogenetic females. There are a large number of plausible hypotheses. To me the most convincing of these are two. The first hypothesis, and the oldest, is that sexual reproduction offers the opportunity to produce recombinant types that can make the population better able to keep up with changes in the environment. Although the subject of a great deal of work, and despite its great plausibility, the hypothesis has been very difficult to test by critical observations or experiments. Second, species with recombination can bunch harmful mutations together and eliminate several in a single “genetic death.” Asexual species, can eliminate them only in the same genotype in which they occurred. If the rate of occurrence of deleterious mutations is one or more per zygote, some mechanism for eliminating them efficiently must exist. A test of this mutation load hypothesis for sexual reproduction, then, is to find whether deleterious mutation rates in general are this high-as Drosophila data argue. Unfortunately, although molecular and evolutionary studies can give information on the total mutation rate, they cannot determine what fraction are deleterious. In addition, there are short discussions of the advantages of diploidy, anisogamy, and separate sexes. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Desai MM  Fisher DS 《Genetics》2011,188(4):997-1014
Mutator alleles, which elevate an individual's mutation rate from 10 to 10,000-fold, have been found at high frequencies in many natural and experimental populations. Mutators are continually produced from nonmutators, often due to mutations in mismatch-repair genes. These mutators gradually accumulate deleterious mutations, limiting their spread. However, they can occasionally hitchhike to high frequencies with beneficial mutations. We study the interplay between these effects. We first analyze the dynamics of the balance between the production of mutator alleles and their elimination due to deleterious mutations. We find that when deleterious mutation rates are high in mutators, there will often be many "young," recently produced mutators in the population, and the fact that deleterious mutations only gradually eliminate individuals from a population is important. We then consider how this mutator-nonmutator balance can be disrupted by beneficial mutations and analyze the circumstances in which fixation of mutator alleles is likely. We find that dynamics is crucial: even in situations where selection on average acts against mutators, so they cannot stably invade, the mutators can still occasionally generate beneficial mutations and hence be important to the evolution of the population.  相似文献   

6.
Engelstädter J 《Genetics》2008,180(2):957-967
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here, I construct a model of a sexual population where deleterious mutations arise on both X and Y chromosomes. Simulation results of this model demonstrate that mutations on the X chromosome can considerably slow down the ratchet. On the other hand, a lower mutation rate in females than in males, background selection, and the emergence of dosage compensation are expected to accelerate the process.  相似文献   

7.
The classical Haldane mutational load for dominant mutations is 1 - e-alpha (where alpha = the mutation rate of the genome). This is independent of the fitness of the mutant heterozygotes. As alpha may be between 0.9 and 1.8 this may be too high for low fecundity species to bear. The load may be greatly reduced for mildly deleterious mutations if female choice (for males with few or no mutations) is present in a polygamous species. It is shown here that if females and males prefer partners with few or no mutations then the load may also be reduced in monogamous species. As in the polygamous model the effect is greatest if mutations are mildly deleterious.  相似文献   

8.
The rate of accumulation of deleterious mutations by Muller's ratchet is investigated in large asexual haploid populations, for a range of parameters with potential biological relevance. The rate of this process is studied by considering a very simple model in which mutations can have two types of effect: either strongly deleterious or mildly deleterious. It is shown that the rate of accumulation of mildly deleterious mutations can be greatly increased by the presence of strongly deleterious mutations, and that this can be predicted from the associated reduction in effective population size (the background selection effect). We also examine the rate of the ratchet when there are two classes of mutation of similar but unequal effects on fitness. The accuracy of analytical approximations for the rate of this process is analysed. Its possible role in causing the degeneration of Y and neo-Y chromosomes is discussed in the light of our present knowledge of deleterious mutation rates and selection coefficients.  相似文献   

9.
Deleterious mutations are considered a major impediment to adaptation, and there are straightforward expectations for the rate at which they accumulate as a function of population size and mutation rate. In a simulation model of an evolving population of asexually replicating RNA molecules, initially deleterious mutations accumulated at rates nearly equal to that of initially beneficial mutations, without impeding evolutionary progress. As the mutation rate was increased within a moderate range, deleterious mutation accumulation and mean fitness improvement both increased. The fixation rates were higher than predicted by many population-genetic models. This seemingly paradoxical result was resolved in part by the observation that, during the time to fixation, the selection coefficient (s) of initially deleterious mutations reversed to confer a selective advantage. Significantly, more than half of the fixations of initially deleterious mutations involved fitness reversals. These fitness reversals had a substantial effect on the total fitness of the genome and thus contributed to its success in the population. Despite the relative importance of fitness reversals, however, the probabilities of fixation for both initially beneficial and initially deleterious mutations were exceedingly small (on the order of 10−5 of all mutations).  相似文献   

10.
Most new mutations are deleterious and are eventually eliminated by natural selection. But in an adapting population, the rapid amplification of beneficial mutations can hinder the removal of deleterious variants in nearby regions of the genome, altering the patterns of sequence evolution. Here, we analyze the interactions between beneficial “driver” mutations and linked deleterious “passengers” during the course of adaptation. We derive analytical expressions for the substitution rate of a deleterious mutation as a function of its fitness cost, as well as the reduction in the beneficial substitution rate due to the genetic load of the passengers. We find that the fate of each deleterious mutation varies dramatically with the rate and spectrum of beneficial mutations and the deleterious substitution rate depends nonmonotonically on the population size and the rate of adaptation. By quantifying this dependence, our results allow us to estimate which deleterious mutations will be likely to fix and how many of these mutations must arise before the progress of adaptation is significantly reduced.  相似文献   

11.
An understanding of the forces that contribute to the phylogenetically widespread phenomenon of sexual reproduction has posed a longstanding problem in evolutionary biology. Mutational theories contend that sex can be maintained when the deleterious mutation rate is sufficiently high, although empirical evidence is equivocal and experimental studies are rare. To test the influence of mutation on the evolution of obligate outcrossing, I introduced a genetic polymorphism for breeding system into populations of the nematode Caenorhabditis elegans with high- and low-mutation rate genetic backgrounds and tracked the change in frequency of females, hermaphrodites, and males over approximately 21 generations. Hermaphrodites invaded all populations, regardless of mutational background. However, experimental populations with elevated mutation rates experienced more outcrossing and greater retention of females. This provides experimental evidence consistent with deleterious mutational explanations for the evolution of sex in principle, but the action of other processes is required to explain the evolution of sex in entirety.  相似文献   

12.
Sex-linked mammalian sperm proteins evolve faster than autosomal ones   总被引:4,自引:0,他引:4  
X-linked genes can evolve slower or faster depending on whether most recessive, or at least partially recessive alleles are deleterious or beneficial due to their hemizygous expression in males. Molecular studies of X chromosome divergence have provided conflicting evidence for both a higher and lower rate of nucleotide substitution at both synonymous and nonsynonymous sites, depending on the nucleotide sites sampled. Using human and mouse orthologous genes, we tested the hypothesis that genes encoding male-specific sperm proteins are evolving faster on the X chromosome compared with autosomes. X-linked sperm proteins have an average nonsynonymous mutation rate almost twice as high as sperm genes found on autosomes, unlike other tissue-specific genes, where no significant difference in the nonsynonymous mutation rate between the X chromosome and autosomes was found. However, no difference was found in the average synonymous mutation rate of X-linked versus autosomal sperm proteins, which along with corresponding higher values of Ka/Ks in X-linked sperm proteins suggest that differences in selective forces and not mutation rates are the underlying cause of higher X-linked mammalian sperm protein divergence.  相似文献   

13.
Mildly deleterious mutation has been invoked as a leading explanation for a diverse array of observations in evolutionary genetics and molecular evolution and is thought to be a significant risk of extinction for small populations. However, much of the empirical evidence for the deleterious-mutation process derives from studies of Drosophila melanogaster, some of which have been called into question. We review a broad array of data that collectively support the hypothesis that deleterious mutations arise in flies at rate of about one per individual per generation, with the average mutation decreasing fitness by about only 2% in the heterozygous state. Empirical evidence from microbes, plants, and several other animal species provide further support for the idea that most mutations have only mildly deleterious effects on fitness, and several other species appear to have genomic mutation rates that are of the order of magnitude observed in Drosophila. However, there is mounting evidence that some organisms have genomic deleterious mutation rates that are substantially lower than one per individual per generation. These lower rates may be at least partially reconciled with the Drosophila data by taking into consideration the number of germline cell divisions per generation. To fully resolve the existing controversy over the properties of spontaneous mutations, a number of issues need to be clarified. These include the form of the distribution of mutational effects and the extent to which this is modified by the environmental and genetic background and the contribution of basic biological features such as generation length and genome size to interspecific differences in the genomic mutation rate. Once such information is available, it should be possible to make a refined statement about the long-term impact of mutation on the genetic integrity of human populations subject to relaxed selection resulting from modern medical procedures.  相似文献   

14.
Abstract The effects of mutation on phenotypic expression are supposed to be mainly deleterious because mutations disrupt the expression of genes that function relatively well under current environmental conditions. Thus, mutations are assumed to give rise to deviant phenotypes that are generally selected against. Radioactive contamination in the Chernobyl region of Ukraine is associated with a significant increase by a factor two to 10 in mutation rate in microsatellite markers of the barn swallow, Hirundo rustica. Barn swallows from Chernobyl had a temporally constant, elevated frequency of partial albinism compared to the situation before radioactive contamination and compared to birds from a control area. Albinism disproportionately affected the carotenoid‐based plumage of the head, suggesting that carotenoid metabolism is particularly susceptible to the effects of radiation. Individuals with partially albinistic plumage had, on average, lower mean phenotypic values than other birds, and this was particularly the case for males. Furthermore, differences in phenotypic variation, as determined using Levene's test, were significantly larger in partial albinos compared to nonalbinos in males, but not in females, even though the null expectation would be the opposite due to the lower mean phenotypic values of partial albinos. Although small phenotypes were commonly associated with germline mutations, there was no general decrease in overall body size during the period 1991–2000, implying that small individuals were selected against. Because partial albinism is disfavored by natural selection, the effects of mutations are deleterious, giving rise to a balance between mutation and selection.  相似文献   

15.
Luo [Biochem. Genet. 43:223-227] concluded, "The mutation ALDH2(() 487Lys allele is not deleterious but is of great benefit to human health." This statement is easily subject to misinterpretation and needs to be clarified. Their results actually show there is a pleiotropic effect associated with the mutation ALDH2(() 487Lys allele that is as deleterious as the risk of alcoholism for which it offers protection, and thus there is no net benefit from having the mutation. A clarification is needed because this statement and others in the paper might be used inappropriately as an endorsement of practices that are in fact worthless, because it masks the need to find what the pleiotropic effect is, and because it seems to contradict what otherwise seems to be a general rule of evolution.  相似文献   

16.
Despite their importance, the parameters describing the spontaneous deleterious mutation process have not been well described in many organisms. If mutations are important for the evolution of every living organism, their importance becomes critical in the case of RNA-based viruses, in which the frequency of mutation is orders of magnitude larger than in DNA-based organisms. The present work reports minimum estimates of the deleterious mutation rate, as well as the characterization of the distribution of deleterious mutational effects on the total fitness of the vesicular stomatitis virus (VSV). The estimates are based on mutation-accumulation experiments in which selection against deleterious mutations was minimized by recurrently imposing genetic bottlenecks of size one. The estimated deleterious mutation rate was 1.2 mutations per genome and generation, with a mean fitness effect of –0.39% per generation. At the end of the mutation-accumulation experiment, the average reduction in fitness was 38% and the distribution of accumulated deleterious effects was, on average, left-skewed. The magnitude of the skewness depends on the initial fitness of the clone analysed. The implications of our findings for the evolutionary biology of RNA viruses are discussed.  相似文献   

17.
Population genetic forces have molded the constitution of the human genome over evolutionary time, and some of the most important parameters are the initial frequency of the allele, p, the effective population size, Ne, and the selection coefficient, s. There is considerable agreement among evolutionary gerontologists that the amplitude of -s is small for alleles that are Deleterious In Late Life (DILL), and thus DILL traits are effectively neutral and should be fixed in the human population in relationship to Ne and p. Even higher rates of fixation of deleterious mutations are predicted to occur in the two nonrecombinant genomes in humans, i.e., the Y chromosome and the mitochondrial genome, as a consequence of their lower Ne than autosomes, and the predicted higher rate of fixation of deleterious alleles on the Y may explain the reduced average life span of males vs. females. The high probability of fixation of neutral and mildly deleterious mutations in the mitochondrial genome explains in part its fast rate of evolution, the high observed frequency of mitochondrial disease in relationship to this genome's small size, and may be the underlying reason for the transfer of mitochondrial genes over evolutionary time to the nucleus. The predicted higher concentration of deleterious mutations on the mitochondrial genome could have some leverage to cause more dysfunction than that predicted by mitochondrial gene number alone, because of the essential role of mitochondrial gene function in multisubunit complexes, the coupling of mitochondrial functions, the observation that some mtDNA sequences facilitate somatic mutation, and the likelihood of deleterious mutations either increasing the production of or the sensitivity to mitochondrial ROS.  相似文献   

18.
Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate.  相似文献   

19.
Bull JJ  Wilke CO 《Genetics》2008,180(2):1061-1070
Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutation rates seem difficult to elevate enough to cause extinction. Surprisingly, models of lethal mutagenesis indicate that bacteria may be candidates for lethal mutagenesis. In contrast to viruses, bacteria reproduce by binary fission, and this property ensures their extinction if subjected to a mutation rate >0.69 deleterious mutations per generation. The extinction threshold is further lowered when bacteria die from environmental causes, such as washout or host clearance. In practice, mutagenesis can require many generations before extinction is achieved, allowing the bacterial population to grow to large absolute numbers before the load of deleterious mutations causes the decline. Therefore, if effective treatment requires rapid population decline, mutation rates 0.69 may be necessary to achieve treatment success. Implications for the treatment of bacteria with mutagens, for the evolution of mutator strains in bacterial populations, and also for the evolution of mutation rate in cancer are discussed.  相似文献   

20.
Evolution of sex in RNA viruses   总被引:5,自引:0,他引:5  
The distribution of deleterious mutations in a population of organisms is determined by the opposing effects of two forces, mutation pressure and selection. If mutation rates are high, the resulting mutation-selection balance can generate a substantial mutational load in the population. Sex can be advantageous to organisms experiencing high mutation rates because it can either buffer the mutation-selection balance from genetic drift, thus preventing any increases in the mutational load (Muller, 1964: Mut. Res. 1, 2), or decrease the mutational load by increasing the efficiency of selection (Crow, 1970: Biomathematics 1, 128). Muller's hypothesis assumes that deleterious mutations act independently, whereas Crow's hypothesis assumes that deleterious mutations interact synergistically, i.e., the acquisition of a deleterious mutation is proportionately more harmful to a genome with many mutations than it is to a genome with a few mutations. RNA viruses provide a test for these two hypotheses because they have extremely high mutation rates and appear to have evolved specific adaptations to reproduce sexually. Population genetic models for RNA viruses show that Muller's and Crow's hypotheses are also possible explanations for why sex is advantageous to these viruses. A re-analysis of published data on RNA viruses that are cultured by undiluted passage suggests that deleterious mutations in such viruses interact synergistically and that sex evolved there as a mechanism to reduce the mutational load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号