首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

4.
T Koyama  F Harada    S Kawai 《Journal of virology》1984,51(1):154-162
The accompanying paper (S. Kawai and T. Koyama , J. Virol. 51:147-153, 1984) describes the isolation and biological properties of a mutant, TK15 , derived from a Rous sarcoma virus mutant, tsNY68 . The cis-acting defect of the mutant is analyzed biochemically in this paper. TK15 virions released from virus-producing 15c (+) cells were deficient in viral genomic 39S RNA, although comparable amounts of viral RNAs were transcribed in 15c (+) and tsNY68 -infected cells. Analysis of provirus DNA occurring in 15c (+) cells suggested that the mutant genome had a deletion of ca. 250 bases near the 5' end of the genome somewhere between the primer binding site and the 5' end of the gag-coding region. These findings indicate that at least part of the sequence lost in the TK15 genome is indispensable for packaging viral genomic RNA into virions. TK15 induces nonvirus -producing 15c (-) transformants at high frequency. Southern blot analysis of DNAs from those 15c (-) clone cells revealed that TK15 -derived proviruses contained various extents of internal deletions. Many 15c (-) clones had a provirus carrying only the src gene with long terminal repeat sequences at both ends. The mechanism for the segregation of 15c (-) cells is discussed.  相似文献   

5.
We investigated the role of 5' untranslated leader sequences of simian immunodeficiency virus (SIV(mac239)) in RNA encapsidation and protein expression. A series of progressively longer deletion mutants was constructed with a common endpoint six nucleotides upstream of the gag initiation codon and another endpoint at the 3' end of the primer binding site (PBS). We found that efficient intracellular Gag-Pol protein accumulation required the region between the PBS and splice donor (SD) site. Marked reduction of genomic RNA packaging was observed with all the deletion mutants that involved sequences at both the 5' and at the 3' ends of the major SD site, and increased nonspecific RNA incorporation could be detected in these mutants. RNA encapsidation was affected only modestly by a deletion of 54 nucleotides at the 3' end of the SD site when the mutant construct pDelta54 was transfected alone. In contrast, the amount of pDelta54 genomic RNA incorporated into particles was reduced more than 10-fold when this mutant was cotransfected with a construct specifying an RNA molecule with a wild-type packaging signal. Therefore, we conclude that the 175 nucleotides located 5' of the gag initiation codon are critical for efficient and selective incorporation of genomic RNA into virions. This location of the SIV Psi element provides the means for efficient discrimination between viral genomic and spliced RNAs.  相似文献   

6.
Earlier studies have shown that the U(L)31 protein is homogeneously distributed throughout the nucleus and cofractionates with nuclear matrix. We report the construction from an appropriate cosmid library a deletion mutant which replicates in rabbit skin cells carrying the U(L)31 gene under a late (gamma1) viral promoter. The mutant virus exhibits cytopathic effects and yields 0.01 to 0.1% of the yield of wild-type parent virus in noncomplementing cells but amounts of virus 10- to 1,000-fold higher than those recovered from the same cells 3 h after infection. Electron microscopic studies indicate the presence of small numbers of full capsids but a lack of enveloped virions. Viral DNA extracted from the cytoplasm of infected cells exhibits free termini indicating cleavage/packaging of viral DNA from concatemers for packaging into virions, but analyses of viral DNAs by pulsed-field electrophoresis indicate that at 16 h after infection, both the yields of viral DNA and cleavage of viral DNA for packaging are decreased. The repaired virus cannot be differentiated from the wild-type parent. These results suggest the possibility that U(L)31 protein forms a network to enable the anchorage of viral products for the synthesis and/or packaging of viral DNA into virions.  相似文献   

7.
8.
M Nishizawa  T Koyama    S Kawai 《Journal of virology》1987,61(10):3208-3213
TK15, a mutant derived from a temperature-sensitive mutant of Rous sarcoma virus (tsNY68), has extremely low infectivity although it has intact viral genes. Previous analyses of the virus and virus-induced transformants showed that the mutant has a defect in packaging of its own genomic RNA, possibly owing to a deletion near the 5' end. Another striking feature of TK15 is that it induces various types of virus-nonproducing (NP) transformants, 15c(-), at high frequency. In this work, the mechanisms of frequent segregation of NP cells were examined by molecular cloning of TK15-derived proviruses from NP cell clones and their sequence analysis. The structure of the major type of provirus, found in about half of the NP cell clones, was colinear with src subgenomic mRNA and was suggested to be due to infection with virions containing subgenomic mRNA in place of genomic RNA. Other types of proviruses present in 15c(-) cells appeared to contain cellular sequences of various lengths replacing various parts of viral sequences. The mechanism for the generation of these proviruses is discussed in relation to the nature of the packaging mutant.  相似文献   

9.
Nonoverlapping deletions that eliminated the 5' (HIV-1US/603del), middle (HIV-1U5/206del), and 3' (HIV-1U5/604del) thirds of the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) were studied for their effects on virus replication (transient transfection of HeLa cells) and infectivity (T-cell lines and peripheral blood mononuclear cells). All three mutants exhibited a wild-type phenotype in directing the production and release of virus particles from transfected HeLa cells. In infectivity assays, HIV-1U5/206del was usually indistinguishable from wild-type virus whereas HIV-1U%/603del was unable to infect human peripheral blood mononuclear cells or MT4 and CEM cells. Investigations of HIV-1U5/603del particles revealed a packaging defect resulting in a 10-fold reduction of encapsidated genomic RNA. The HIV-1U5/604del mutant either was noninfectious or exhibited delayed infection kinetics, depending on the cell type and multiplicity of infection. Quantitative competitive PCR indicated that HIV-1U5/604del synthesized normal amounts of viral DNA in newly infected cells. During the course of a long-term infectivity assay, a revertant of the HIV-1U5/604del mutant that displayed rapid infection kinetics emerged. Nucleotide sequence analysis indicated that the original 26-nucleotide deletion present in HIV-1U5/604del had been extended an additional 19 nucleotides in the revertant virus. Characterization of the HIV-1U5/604del mutant LTR in in vitro integration reactions revealed defective 3' processing and strand transfer activities that were partially restored when the revertant LTR substrate was used, suggesting that the reversion corrected a similar defect in the mutant virus.  相似文献   

10.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

11.
Sequences required for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genome RNA into virus particles were identified. Deletion of 19 base pairs between the 5' long terminal repeat and the gag gene initiation codon of HIV-1 resulted in a virus markedly attenuated for replication in human T lymphocytes. The mutant virus was characterized by nearly wild-type ability to encode viral proteins and to produce virion particles. The mutant virions exhibited a significant reduction in the content of HIV-1-specific RNA. These results identify an important component of the HIV-1 packaging signal.  相似文献   

12.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   

13.
J Luban  S P Goff 《Journal of virology》1994,68(6):3784-3793
We previously identified blocks of sequence near the 5' end of the human immunodeficiency virus (HIV-1) genome which conferred on RNA the ability to bind specifically to the HIV-1 Gag polyprotein, Pr55gag (J. Luban and S. P. Goff, J. Virol. 65:3203-3212, 1991; R. Berkowitz, J. Luban, and S. P. Goff, J. Virol. 67:7190-7200, 1993). Here we report the use of an RNase protection assay to quantify the effect of deletion of these sequences on RNA packaging into virions. First, we demonstrated with wild-type HIV-1 sequences that in comparison with spliced viral RNA, full-length viral genomic RNA is enriched 20-fold in virions. A previously described mutation with deletion of sequences between the major splice donor and the first codon of gag (A. Lever, H. Gottlinger, W. Haseltine, and J. Sodroski, J. Virol. 63:4085-4087, 1989) disrupted these ratios such that different HIV-1 RNA forms were packaged in direct proportion to cytoplasmic concentrations. The effect of deletion mutations preceding and within gag coding sequence on packaging was then tested in competition with RNAs containing wild-type packaging sequences. Using this system, we were able to demonstrate significant effects on packaging of RNAs with mutations immediately preceding the first codon of gag. The greatest reduction in packaging was seen with RNAs lacking the first 40 nucleotides of gag coding sequence, although sequences more 3' had slight additional effects.  相似文献   

14.
RNA packaging signals (psi) from the 5' ends of murine and avian retroviral genomes have previously been shown to direct encapsidation of heterologous mRNA into the retroviral virion. The avian 5' packaging region has now been further characterized, and we have defined a 270-nucleotide sequence, A psi, which is sufficient to direct packaging of heterologous RNA. Identification of the A psi sequence suggests that several retroviral cis-acting sequences contained in psi+ (the primer binding site, the putative dimer linkage sequence, and the splice donor site) are dispensable for specific RNA encapsidation. Subgenomic env mRNA is not efficiently encapsidated into particles, even though the A psi sequence is present in this RNA. In contrast, spliced heterologous psi-containing RNA is packaged into virions as efficiently as unspliced species; thus splicing per se is not responsible for the failure of env mRNA to be encapsidated. We also found that an avian retroviral mutant deleted for both nucleocapsid Cys-His boxes retains the capacity to encapsidate RNA containing psi sequences, although this RNA is unstable and is thus difficult to detect in mature particles. Electron microscopy reveals that virions produced by this mutant lack a condensed core, which may allow the RNA to be accessible to nucleases.  相似文献   

15.
16.
Mutant dl313 is an adenovirus type 5 deletion mutant which lacks 2,307 base pairs, including the 5' portion of the polypeptide IX gene. Mutant virions did not contain detectable levels of this polypeptide. They were substantially more thermolabile than wild-type particles and did not produce hexon nonomers upon pyridine disruption.  相似文献   

17.
18.
A series of deletion mutations localized near the 5' end of the Moloney murine leukemia virus genome was generated by site-specific mutagenesis of cloned viral DNA. The mutants recovered from such deleted DNAs failed to synthesize the normal glycosylated gag protein gPr80gag. Two of the mutants made no detectable protein, and a third mutant, containing a 66-base pair deletion, synthesized an altered gag protein which was not glycosylated. All the mutants made normal amounts of the internal Pr65gag protein. The viruses were XC positive and replicated normally in NIH/3T3 cells as well as in lymphoid cell lines. These results indicate that the additional peptides of the glycosylated gag protein are encoded near the 5' end, that the glycosylated and internal gag proteins are synthesized independently, and that the glycosylated gag protein is not required during the normal replication cycle. In addition, the region deleted in these mutants apparently encodes no cis-acting function needed for replication. Thus, all essential sequences, including those for packaging viral RNA, must lie outside this area.  相似文献   

19.
20.
Yu SS  Kim JM  Kim S 《Journal of virology》2000,74(18):8775-8780
We have identified a previously unknown nucleotide sequence important for the packaging of murine leukemia virus. This nucleotide sequence is located downstream from the stop codon of the env gene but does not overlap the polypurine tract. Deletion of 17 bp from this region resulted in a more than 10-fold decrease in viral titer. Consistent with this result, the deletion mutant showed a 20- to 30-fold drop in the amount of virion RNA in the culture supernatant. The total amount of virion protein in the culture supernatant was comparable for the deletion mutant and the parental virus, suggesting that the mutant construct could release the empty viral particles. These results suggested that the packaging signal sequence might be present at the two extreme sites of the viral genome, one in the region around the splice donor sequence downstream from the 5' long terminal repeat (LTR) and the other immediately upstream from the 3' LTR. Implications for gene therapy, especially in regard to construction of retroviral vectors and packaging constructs, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号