首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

2.
Slow upward drift of VO2 during constant-load cycling in untrained subjects   总被引:2,自引:0,他引:2  
The oxygen uptake kinetics during constant-load exercise when sitting on a bicycle ergometer were determined in 7 untrained subjects by measuring breath-by-breath VO2 during continuous exercise to volitional exhaustion (mean endurance time = 1160 +/- 172 s) at a pedal frequency of 70 revolutions.min-1. The power output, averaging 189.5 W, was set at 82.5% of that eliciting the individual VO2max during a 5 min incremental exercise test. Throughout the exercise period, the VO2 kinetics could be appropriately described by a two-component exponential equation of the form: VO2(t) = Ya[1 - exp(-kat)] + Yb[1 - exp(-kbt)] where VO2 is net oxygen consumption and t the time from work onset. VO2 measured at the end of exercise was close to VO2max (98% VO2max) and the mean values of Ya, ka, Yb and kb amounted to 1195 ml O2.min-1, 0.034 s-1, 1562 ml O2.min-1, and 0.005 s-1 respectively. The initial rate of increase in VO2 predicted from the above equation is slower than that calculated, for the same work intensity, on the basis of the data obtained by Morton (1985) in trained subjects. For t greater than 480 s, however, the two models yield substantially equal results.  相似文献   

3.
Cardiovascular adaptations to exercise training in the elderly   总被引:1,自引:0,他引:1  
Maximal O2 uptake (VO2max) and left ventricular function decrease with age. Endurance exercise training of sufficient intensity, frequency, and duration increases VO2max in the elderly. The mechanisms underlying the increased VO2max in the elderly are enhanced O2 extraction of trained muscle during maximal exercise leading to a wider arteriovenous O2 difference, and higher cardiac output in the trained state. However, increased cardiac output during true maximal exercise has not been documented in elderly subjects. Endurance exercise training results in a lower heart rate and rate pressure product during submaximal exercise at a given intensity. However, no improvement in left ventricular function has been reported in the elderly after exercise training. Highly trained master athletes exhibit proportional increases in the left ventricular end-diastolic dimension and wall thickness suggestive of volume-overload hypertrophy compared with age-matched sedentary controls. The magnitude of left ventricular enlargement is similar to that in young athletes. The failure of exercise training to alter the age-related deterioration of left ventricular function in the elderly may reflect an insufficient training stimulus rather than the inability of the heart to adapt to training in elderly subjects.  相似文献   

4.
The purpose of this study was to determine the effect of endurance exercise training on the time course of the increase in VO2 toward steady state in response to submaximal constant load work. Seven men participated in a strenuous program of endurance exercise for 40 min/day, 6 days/wk for 10 wk. Their average VO2max increased from 3.29 liters before training to 4.53 liters at the end of the training program. VO2 was measured continuously on a breath-by-breath basis at work rates requiring 40%, 50%, 60%, or 70% of VO2max before training. After training the subjects were retested both at the same absolute and the same relative work rates. The increases in VO2 toward steady state occurred more rapidly in the trained than in the untrained state both at the same absolute and at the same relative work rates. The finding that O2 uptake rises to meet O2 demand more rapidly in the trained than in the untrained state provides evidence that the working muscles become less hypoxic at the onset of exercise of the same intensity after training.  相似文献   

5.
These experiments examined the exercise-induced changes in pulmonary gas exchange in elite endurance athletes and tested the hypothesis that an inadequate hyperventilatory response might explain the large intersubject variability in arterial partial pressure of oxygen (PaO2) during heavy exercise in this population. Twelve highly trained endurance cyclists [maximum oxygen consumption (VO2max) range = 65-77 ml.kg-1.min-1] performed a normoxic graded exercise test on a cycle ergometer to VO2max at sea level. During incremental exercise at VO2max, 5 of the 12 subjects had ideal alveolar to arterial PO2 gradients (PA-aO2) of above 5 kPa (range 5-5.7) and a decline from resting PaO2 (delta PaO2) 2.4 kPa or above (range 2.4-2.7). In contrast, 4 subjects had a maximal exercise PA-aO2 of 4.0-4.3 kPa with delta PaO2 of 0.4-1.3 kPa while the remaining 3 subjects had PA-aO2 of 4.3-5 kPa with delta PaO2 between 1.7 and 2.0 kPa. The correlation between PAO2 and PaO2 at VO2max was 0.17. Further, the correlation between the ratio of ventilation to oxygen consumption vs PaO2 and arterial partial pressure of carbon dioxide vs PaO2 at VO2max was 0.17 and 0.34, respectively. These experiments demonstrate that heavy exercise results in significantly compromised pulmonary gas exchange in approximately 40% of the elite endurance athletes studied. These data do not support the hypothesis that the principal mechanism to explain this gas exchange failure is an inadequate hyperventilatory response.  相似文献   

6.
Breath-by-breath O2 uptake (VO2) kinetics and increase of blood lactate concentration (delta Lab) were determined at the onset of square-wave stepping (S) or cycling (C) exercise on six male subjects during 1) transition from rest (R) to constant work load, 2) transition from lower to heavier work loads, wherein the baseline VO2 (VO2 s) was randomly chosen between 20 and 65% of the subjects' maximal O2 uptake (VO2 max), and 3) inverse transition from higher to lower work loads and/or to rest. VO2 differences between starting and arriving levels were 20-60% VO2 max. In C, the VO2 on-response became monotonically slower with increasing VO2 s, the half time (t1/2) increasing from approximately 22 s for VO2 s = R to approximately 63 s when VO2 s approximately equal to 50% VO2 max. In S, the fastest VO2 kinetics (t1/2 = 16 s) was attained from VO2 s = 15-30% VO2 max, the t1/2 being approximately 25 s when starting from R or from 50% VO2 max. The slower VO2 kinetics in C were associated with a much larger delta Lab. The VO2 kinetics in recovery were essentially the same in all cases and could be approximated by a double exponential with t1/2 of 21.3 +/- 6 and 93 +/- 45 s for the fast and slow components, respectively. It is concluded that the O2 deficit incurred is the sum of three terms: 1) O2 stores depletion, 2) O2 equivalent of early lactate production, and 3) O2 equivalent of phosphocreatine breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To find out whether endurance training influences the kinetics of the increases in heart rate (fc) during exercise driven by the sympathetic nervous system, the changes in the rate of fc adjustment to step increments in exercise intensities from 100 to 150 W were followed in seven healthy, previously sedentary men, subjected to 10-week training. The training programme consisted of 30-min cycle exercise at 50%-70% of maximal oxygen uptake (VO2max) three times a week. Every week during the first 5 weeks of training, and then after the 10th week the subjects underwent the submaximal three-stage exercise test (50, 100 and 150 W) with continuous fc recording. At the completion of the training programme, the subjects' VO2max had increased significantly (39.2 ml.min-1.kg-1, SD 4.7 vs 46 ml.min-1.kg-1, SD 5.6) and the steady-state fc at rest and at all submaximal intensities were significantly reduced. The greatest decrease in steady-state fc was found at 150 W (146 beats.min-1, SD 10 vs 169 beats.min-1, SD 9) but the difference between the steady-state fc at 150 W and that at 100 W (delta fc) did not decrease significantly (26 beats.min-1, SD 7 vs 32 beats.min-1, SD 6). The time constant (tau) of the fc increase from the steady-state at 100 W to steady-state at 150 W increased during training from 99.4 s, SD 6.6 to 123.7 s, SD 22.7 (P less than 0.01) and the acceleration index (A = 0.63.delta fc.tau-1) decreased from 0.20 beats.min-1.s-1, SD 0.05 to 0.14 beats.min-1.s-1, SD 0.04 (P less than 0.02). The major part of the changes in tau and A occurred during the first 4 weeks of training. It was concluded that heart acceleration following incremental exercise intensities slowed down in the early phase of endurance training, most probably due to diminished sympathetic activation.  相似文献   

8.
The relationship between half time of the O2 uptake on-response (t1/2 VO2on, seconds) and early blood lactate accumulation (delta Lab, mmol.1(-1) at the onset of submaximal arm and/or leg exercise was the object of a cross-sectional study of sedentary subjects (S,n = 3), and kayakers (K, n = 8), and of a longitudinal study on 11 untrained subjects of specific arm vs. leg training. In supine arm cranking (W = 125 watts) S had an average t1/2 VO2on of 82 s and a delta Aab of 9.2 mmol.1(-1) compared to 47 +/- 7 s and 4 +/- 1.4 mmol.1(-1), respectively, for K. In longitudinal trainees shorter t1/2 VO2on was accompanied by lower Lab for the trained limbs. Specific limb conditioning in swimmers and runners resulted in shorter t1/2 VO2on. A linear relationship was observed between delta Lab and t1/2 VO2on having an intercept on the time axis at congruent to 20 s and a slope proportional to muscle mass. Trained muscles were grouped closest to the intercept indicating local acceleration of the rate of O2 transfer approaching the t1/2 VO2on for isolated perfused muscle at the onset of work. Since t1/2 VO2on, we conclude that factors distal to the capillary are specifically involved in the local training response.  相似文献   

9.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

10.
The plasma concentrations of aldosterone and its known regulators, plasma renin, potassium and ACTH, were examined during graded intensities of treadmill exercise (50, 70 and 90% of maximal oxygen uptake, VO2max). Sedentary men (n = 7) and two groups of runners of different training status (moderately trained, 15-25 miles/week, n = 7; highly trained, greater than 45 miles/week, n = 7) were studied in an attempt to define whether physical training causes changes in aldosterone homeostasis. Acute exercise was associated with elevations in plasma aldosterone, renin activity, potassium and ACTH in all three groups of subjects at exercise intensities of 70 and 90% VO2max. There were no differences in any of the responses among the three groups except for a blunted response of PRA at 90% VO2max in highly trained athletes. The exercise-induced rise of plasma aldosterone concentration did not correlate with changes in the concentration of its regulatory substances. We conclude that exercise stimulates the renin-angiotensin-aldosterone axis in an intensity-dependent fashion. With increased physical training identical hormonal and metabolic responses result at increased absolute workloads.  相似文献   

11.
The kinetics of adjustment of oxygen uptake (VO2) at the onset of a square wave of exercise in man has been shown to be variable and related mainly to factors located distal to the capillary. The present study examined the effects of decreasing oxygen and high energy phosphates (approximately P) stores, by blood flow occlusion (BFO) and/or preceding exercise, on the half time of the VO2 on-response (t1/2 VO2 on-) during arm exercise. Twelve male subjects performed an arm exercise test at a standard intensity of 75 W (75 WA) following six procedures designed progressively to decrease O2 and/or approximately P stores. Breath-by-breath VO2 and lactic acid accumulation in blood (delta [1ab]) during the VO2 transient were measured. Preceding the 75 WA by 5 min of 125 W leg exercise decreased significantly the t1/2 VO2 on- (63-47 s). Preceding the 75 WA with either arm BFO and isometric exercise (1 min), no-load or 25 W (25WA) arm cranking (5 min) did not significantly affect t1/2 VO2 on- or delta [1ab]. Preceding 75 WA with 5-10 min BFO or BFO plus 25 WA resulted in a significant decrease in t1/2 VO2 on- (20% and 50%, respectively). The delta [1ab] increased linearly with t1/2 VO2 on-responses greater than 24 s. These data suggest that the local depletion of O2 and/or approximately P stores play an important role in determining the kinetics of adjustment of VO2 to exercise.  相似文献   

12.
To study the effects of age and training on lactate production in older trained subjects, the lactate kinetics of highly trained cyclists [HT, n = 7; 65 (SEM 1.2) years] and control subjects with low training (LT, n = 7) and of similar age were compared to those of young athletes [YA, n = 7; 26 (SEM 0.7) years], during an incremental exercise test to maximum power. The results showed that the lactacidaemia at maximal oxygen uptake (VO2max) was lower for HT than for LT (P < 0.05) and, in both cases, lower than that of YA (P < 0.001). The respective values were HT: 3.9 (SEM 0.51), LT: 5.36 (SEM 1.12), and YA: 10.3 (SEM 0.63) mmol.l-1. At submaximal powers, however, the difference in lactacidaemia was not significant between HT and YA, although the values for lactacidaemia at VO2max calculated per watt and per watt normalized by body mass were significantly lower for HT (P < 0.001) and LT (P < 0.02). These results would indicate that the decline in power with age induced a decline in lactacidaemia. Yet this loss in power was not the only causative factor; indeed, our results indicated a complementary metabolic influence. In the older subjects training decreased significantly the lactacidaemia for the same submaximal power (P < 0.01) and from 60% of VO2max onwards (P < 0.05); as for YA it postponed the increase and accumulation of lactates. The lactate increase threshold (Thla-,1) was found at 46% VO2max for LT and at 56% VO2max for HT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

14.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

15.
Elevated oxygen uptake (VO2) during moderate-intensity running following a bout of interval running training has been studied previously. To further investigate this phenomenon, the VO2 response to high-intensity exercise was examined following a bout of interval running. Well-trained endurance runners were split into an experimental group [maximum oxygen uptake, VO2max 4.73 (0.39)l x min(-1)] and a reliability group [VO2max 4.77 (0.26)l x min(-1)]. The experimental group completed a training session (4 x 800 m at 1 km x h(-1) below speed at VO2max, with 3 min rest between each 800-m interval). Five minutes prior to, and 1 h following the training session, subjects completed 6 min 30 s of constant speed, high-intensity running designed to elicit 40% delta (where delta is the difference between VO2 at ventilatory threshold and VO2max; tests 1 and 2, respectively). The slow component of VO2 kinetics was quantified as the difference between the VO2 at 6 min and the VO2 at 3 min of exercise, i.e. deltaVO2(6-3). The deltaVO2(-3) was the same in two identical conditions in the reliability group [mean (SD): 0.30 (0.10)l x min(-1) vs 0.32 (0.13)l x min(-1)]. In the experimental group, the magnitude of the slow component of VO2 kinetics was increased in test 2 compared with test 1 by 24.9% [0.27 (0.14)l x min(-1) vs 0.34 (0.08)l x min(-1), P < 0.05]. The increase in deltaVO2(6-3) in the experimental group was observed in the absence of any significant change in body mass, core temperature or blood lactate concentration, either at the start or end of tests 1 or 2. It is concluded that similar mechanisms may be responsible for the slow component of VO2 kinetics and for the fatigue following the training session. It has been suggested previously that this mechanism may be linked primarily to changes within the active limb, with the recruitment of alternative and/or additional less efficient fibres.  相似文献   

16.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (VO?max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min?1·kg?1 VO?) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of VO?max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher VO?max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.  相似文献   

18.
The purpose of this study was to determine the effect of training on the rating of perceived exertion (RPE) at the ventilatory threshold. College students were assigned to either training (n = 17) or control (n = 10) groups. Trainers completed 18 interval training sessions (five X 5 min cycling at 90-100% VO2max) and 8 continuous training sessions (40 min running or cycling) in 6 weeks. Pre- and post-training, cardiorespiratory, metabolic, and perceptual variables were measured at the ventilatory threshold during graded exercise tests on a cycle ergometer. Ventilatory threshold was that point above which VE X VO2-1 increased abruptly relative to work rate. Post-training means of trained and control subjects were compared using analysis of covariance, with pre-training values as covariates. Following training, the adjusted means for the trained subjects were significantly greater (p less than 0.05) than for controls for VO2max (6%), and for work rate (20%), VO2 (23%), and %VO2max (13%) at the ventilatory threshold. However, adjusted means for RPE at the ventilatory threshold were not significantly different (2%). Both before and after training, exercise at the ventilatory threshold was perceived as 'somewhat hard' to 'hard' (RPE = 13-15) by both groups. The relationship between RPE and %VO2max was altered by training, with trained subjects having a lower RPE at a given %VO2max. It is concluded that RPE at the ventilatory threshold is not affected by training, despite that after training the ventilatory threshold occurs at a higher work rate and is associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

19.
The present study aimed at investigating serum leptin levels of elite young male athletes who have been regularly exercising for a long period of time and males who do not exercise. The study included 24 trained young male athletes and 22 healthy sedentary male subjects. Athletes who participated in the study were from different sports branches and have been regularly exercising for at least 2 years. Serum leptin levels were determined by RIA. VO2max levels were identified during maximal exercise. Lactic acid levels were identified one minute before and one minute after exercise from the fingertip by Pro-lactate kit. As a result of the tests, although BMI values of trained young male athletes and healthy males were close to each other, leptin levels were significantly lower (p<0.01), VO2max values were significantly higher (p<0.01) and test periods were significantly longer (p<0.001) in the former. In conclusion, regular exercise, by reducing body fat percentage, suppresses serum leptin levels.  相似文献   

20.
The fundamental pulmonary O(2) uptake (.VO(2)) response to moderate, constant-load exercise can be characterized as (d.VO(2)/dt)(tau)+Delta.VO(2) (t)=Delta.VO(2SS) where Delta.VO(2SS) is the steady-state response, and tau is the time constant, with the .VO(2) kinetics reflecting intramuscular O(2) uptake (.QO(2)) kinetics, to within 10%. The role of phosphocreatine (PCr) turnover in .QO(2) control can be explored using (31)P-MR spectroscopy, simultaneously with .VO(2). Although tau.VO(2) and tauPCr vary widely among subjects (approx. 20-65 s), they are not significantly different from each other, either at the on- or off-transient. A caveat to interpreting the "well-fit" exponential is that numerous units of similar Delta.VO(2SS) but with a wide tau distribution can also yield a .VO(2) response with an apparent single tau. This tau is, significantly, inversely correlated with lactate threshold and .VO(2max)(but is poorly predictive; a frail stamen, therefore), consistent with tau not characterizing a compartment with uniform kinetics. At higher intensities, the fundamental kinetics become supplemented with a slowly-developing phase, setting .VO(2)on a trajectory towards maximum .VO(2). This slow component is also demonstrable in Delta[PCr]: the decreased efficiency thereby reflecting a predominantly high phosphate-cost of force production rather than a high O(2)-cost of phosphate production. We also propose that the O(2)-deficit for the slow-component is more likely to reflect shifting Delta.VO(2SS) rather than a single one with a single tau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号