首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc is one of the metal ions essential for life, as it is required for the proper functioning of a large number of proteins. Despite its importance, the annotation of zinc-binding proteins in gene banks or protein domain databases still has significant room for improvement. In the present work, we compiled a list of known zinc-binding protein domains and of known zinc-binding sequence motifs (zinc-binding patterns), and then used them jointly to analyze the proteome of 57 different organisms to obtain an overview of zinc usage by archaeal, bacterial, and eukaryotic organisms. Zinc-binding proteins are an abundant fraction of these proteomes, ranging between 4% and 10%. The number of zinc-binding proteins correlates linearly with the total number of proteins encoded by the genome of an organism, but the proportionality constant of Eukaryota (8.8%) is significantly higher than that observed in Bacteria and Archaea (from 5% to 6%). Most of this enrichment is due to the larger portfolio of regulatory proteins in Eukaryota.  相似文献   

2.
In metalloproteins, the protein environment modulates metal properties to achieve the required goal, which can be protein stabilization or function. The analysis of metal sites at the atomic level of detail provided by protein structures can thus be of benefit in functional and evolutionary studies of proteins. In this work, we propose a structural bioinformatics approach to the study of metalloproteins based on structural templates of metal sites that include the PDB coordinates of protein residues forming the first and the second coordination sphere of the metal. We have applied this approach to non-heme iron sites, which have been analyzed at various levels. Templates of sites located in different protein domains have been compared, showing that similar sites can be found in unrelated proteins as the result of convergent evolution. Templates of sites located in proteins of a large superfamily have been compared, showing possible mechanisms of divergent evolution of proteins to achieve different functions. Furthermore, template comparisons have been used to predict the function of uncharacterized proteins, showing that similarity searches focused on metal sites can be advantageously combined with typical whole-domain comparisons. Structural templates of metal sites, finally, may constitute the basis for a systematic classification of metalloproteins in databases.  相似文献   

3.
【目的】研究铁缺失对化脓性链球菌的影响,并寻找摄铁系统中的关键蛋白。【方法】以化脓链球菌为模型,利用含Fe和不含Fe的培养基对细菌进行培养,收集全细胞蛋白进行双向电泳,定量软件分析电泳图谱,质谱鉴定差异蛋白,进而通过生物信息学分析蛋白上下游关系,从中找到关键蛋白。【结果】鉴定出20个差异蛋白,并用Cytoscape软件对差异蛋白相互关系网络进行节点分析找到其中5个瓶颈分子。【结论】在培养基中的Fe3+缺乏时,细菌的生物合成和含氮化合物、生物大分子等重要代谢受到很大影响,这为进一步阐明细菌铁代谢机制奠定了基础。  相似文献   

4.
The question as to the origin and relationship between the three domains of life is lodged in a phylogenetic impasse. The dominant paradigm is to see the three domains as separated. However, the recently characterized bacterial species have suggested continuity between the three domains. Here, we review the evidence in support of this hypothesis and evaluate the implications for and against the models of the origin of the three domains of life. The existence of intermediate steps between the three domains discards the need for fusion to explain eukaryogenesis and suggests that the last universal common ancestor was complex. We propose a scenario in which the ancestor of the current bacterial Planctomycetes, Verrucomicrobiae and Chlamydiae superphylum was related to the last archaeal and eukaryotic common ancestor, thus providing a way out of the phylogenetic impasse.  相似文献   

5.
In high-throughput genome-level protein investigation efforts, such as Structural Genomics, the systematic experimental characterization of metal-binding properties (i.e., the investigation of the metalloproteome) is not always pursued and remains far from trivial. In the present work, we have applied a bioinformatic approach to investigate the occurrence of (putative) copper-binding proteins in 57 different organisms spanning the entire tree of life. We found that the size of the copper proteome is generally less than 1% of the total proteome of an organism, in both eukaryotes and prokaryotes. The occurrence of copper-binding proteins is relatively scarce when compared to that of zinc-binding proteins and of non-heme iron proteins. This may be due to both poorer bioavailability (in particular with respect to iron in the ancient world) and the complexity of copper chemistry and the risks associated with it, which may have adversely affected natural selection of copper-binding proteins. The present analysis shows that there is a strong relationship between the metal coordination sphere and protein function. A network involving proteins having roles in both copper transport and respiration was identified, parts or all of which are detected in the majority of the organisms examined.  相似文献   

6.
7.
Soybean lipoxygenase isoenzyme L3 represents a second example (after L1) of the X-ray structure (R = 17% at 2.6 Å resolution) for a member of the large family of lipoxygenases. L1 and L3 have different characteristics in catalysis, although they share 72% sequence identity (the changes impact 255 amino acids) and similar folding (average Cα rms deviation of 1 Å). The critical nonheme iron site has the same features as for L1: 3O and 3N in pseudo C3v orientation, with two oxygen atoms (from Asn713 and water) at a nonbinding distance. Asn713 and His518 are strategically located at the junction of three cavities connecting the iron site with the molecule surface. The most visible differences between L1 and L3 isoenzymes occur in and near these cavities, affecting their accessibility and volume. Among the L1/L3 substitutions Glu256/Thr274, Tyr409/His429, and Ser747/Asp766 affect the salt bridges (L1: Glu256…His248 and Asp490…Arg707) that in L1 restrict the access to the iron site from two opposite directions. The L3 molecule has a passage going through the whole length of the helical domain, starting at the interface with the Nt-domain (near 25–27 and 254–278) and going to the opposite end of the Ct-domain (near 367, 749). The substrate binding and the role of His513, His266, His776 (and other residues nearby) are illustrated and discussed by using models of linoleic acid binding. These hypotheses provide a possible explanation for a stringent stereospecificity of catalytic products in L1 (that produces predominantly 13-hydroperoxide) versus the lack of such specificity in L3 (that turns out a mixture of 9- and 13-hydroperoxides and their diastereoisomers). Proteins 29:15–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Microbially reducible iron (water-soluble plus exchangeable forms) in three soils represented about 20% of the chemically reducible iron. The amount of iron reduced by microorganisms increased for about ten days to two weeks following flooding and thereafter remained constant. A similar trend was observed for the release of added Fe-59 in the soils following flooding, except that the reduction of labelled iron began earlier. In the more weathered soil, a higher proportion of the total iron was reduced by citrate-dithionite than in the relatively unweathered alluvial soils. Of labelled iron added, sequential reduction showed approximately 70% in the three soils was microbially reducible, an additional 20% was reduced by citrate-dithionite, and 10% of the labelled iron had moved into the residual form.  相似文献   

9.
以枳壳、酸橙和红橘三种柑橘砧木实生苗为材料,采用溶液培养法研究了铁胁迫对其生长、生理特性及铁分布的影响.结果表明:缺铁胁迫(0 μmol·L-1)时,三种柑橘砧木的生长指标及叶片叶绿素含量均显著低于低铁(5 μmol·L-1)和适量铁(50 μmol·L-1)处理;三者叶片和根系的POD、CAT活性显著降低,SOD活性...  相似文献   

10.
Discrepancies in phylogenetic trees of bacteria and archaea are often explained as lateral gene transfer events. However, such discrepancies may also be due to phylogenetic artifacts or orthology assignment problems. A first step that may help to resolve this dilemma is to estimate the extent of phylogenetic inconsistencies in trees of prokaryotes in comparison with those of higher eukaryotes, where no lateral gene transfer is expected. To test this, we used 21 proteomes each of eukaryotes (mainly opisthokonts), proteobacteria, and archaea that spanned equivalent levels of genetic divergence. In each domain of life, we defined a set of putative orthologous sequences using a phylogenetic-based orthology protocol and, as a reference topology, we used a tree constructed with concatenated genes of each domain. Our results show, for most of the tests performed, that the magnitude of topological inconsistencies with respect to the reference tree was very similar in the trees of proteobacteria and eukaryotes. When clade support was taken into account, prokaryotes showed some more inconsistencies, but then all values were very low. Discrepancies were only consistently higher in archaea but, as shown by simulation analysis, this is likely due to the particular tree of the archaeal species used here being more difficult to reconstruct, whereas the trees of proteobacteria and eukaryotes were of similar difficulty. Although these results are based on a relatively small number of genes, it seems that phylogenetic reconstruction problems, including orthology assignment problems, have a similar overall effect over prokaryotic and eukaryotic trees based on single genes. Consequently, lateral gene transfer between distant prokaryotic species may have been more rare than previously thought, which opens the way to obtain the tree of life of bacterial and archaeal species using genomic data and the concatenation of adequate genes, in the same way as it is usually done in eukaryotes.  相似文献   

11.
Robinson NP  Bell SD 《The FEBS journal》2005,272(15):3757-3766
Replication of DNA is essential for the propagation of life. It is somewhat surprising then that, despite the vital nature of this process, cellular organisms show a great deal of variety in the mechanisms that they employ to ensure appropriate genome duplication. This diversity is manifested along classical evolutionary lines, with distinct combinations of replicon architecture and replication proteins being found in the three domains of life: the Bacteria, the Eukarya and the Archaea. Furthermore, although there are mechanistic parallels, even within a given domain of life, the way origins of replication are defined shows remarkable variation.  相似文献   

12.

Background

Chromosomal orthologs can reveal the shared ancestral gene set and their evolutionary trends. Additionally, physico-chemical properties of encoded proteins could provide information about functional adaptation and ecological niche requirements.

Results

We analyzed 7080 genes (five groups of 1416 orthologs each) from Rhizobiales species (S. meliloti, R. etli, and M. loti, plant symbionts; A. tumefaciens, a plant pathogen; and B. melitensis, an animal pathogen). We evaluated their phylogenetic relationships and observed three main topologies. The first, with closer association of R. etli to A. tumefaciens; the second with R. etli closer to S. meliloti; and the third with A. tumefaciens and S. meliloti as the closest pair. This was not unusual, given the close relatedness of these three species. We calculated the synonymous (dS) and nonsynonymous (dN) substitution rates of these orthologs, and found that informational and metabolic functions showed relatively low dN rates; in contrast, genes from hypothetical functions and cellular processes showed high dN rates. An alternative measure of sequence variability, percentage of changes by species, was used to evaluate the most specific proportion of amino acid residues from alignments. When dN was compared with that measure a high correlation was obtained, revealing that much of evolutive information was extracted with the percentage of changes by species at the amino acid level. By analyzing the sequence variability of orthologs with a set of five properties (polarity, electrostatic charge, formation of secondary structures, molecular volume, and amino acid composition), we found that physico-chemical characteristics of proteins correlated with specific functional roles, and association of species did not follow their typical phylogeny, probably reflecting more adaptation to their life styles and niche preferences. In addition, orthologs with low dN rates had residues with more positive values of polarity, volume and electrostatic charge.

Conclusions

These findings revealed that even when orthologs perform the same function in each genomic background, their sequences reveal important evolutionary tendencies and differences related to adaptation. This article was reviewed by: Dr. Purificación López-García, Prof. Jeffrey Townsend (nominated by Dr. J. Peter Gogarten), and Ms. Olga Kamneva.  相似文献   

13.
Summary The kinetics of the separate processes of Fe2(III)-transferrin binding to the transferrin receptor, transferrin-receptor internalization, iron dissociation from transferrin, iron passage through the membrane, and iron mobilization into the cytoplasm were studied by pulse-chase experiments using rabbit reticulocytes and59Fe,125I-labeled rabbit transferrin. The binding of59Fe-transferrin to transferrin receptors was rapid with an apparent rate constant of 2×105 m –1 sec–1. The rate of internalization of59Fe-transferrin was directly measured at 520±100 molecules of Fe2(III)-transferrin internalized/sec/cell with 250±43 sec needed to internalize the entire complement of reticulocyte transferrin receptors. Subsequent to Fe2(III)-transferrin internalization the flux of59Fe was followed through three compartments: internalized transferrin, membrane, and cytosol.A process preceding iron dissociation from transferrin and a reaction involving membrane-associated iron required 17±2 sec and 34±5 sec, respectively. Apparent rate constants of 0.0075±0.002 sec–1 and 0.0343±0.0118 sec–1 were obtained for iron dissociation from transferrin and iron mobilization into the cytosol, respectively. Iron dissociation from transferrin is the rate-limiting step. An apparent rate constant of 0.0112±0.0025 sec–1 was obtained for processes involving iron transport through the membrane although at least two reactions are likely to be involved. Based on mechanistic considerations, iron transport through the membrane may be attributed to an iron reduction step followed by a translocation step. These data indicate that the uptake of iron in reticulocytes is a sequential process, with steps after the internalization of Fe2(III)-transferrin that are distinct from the handling of transferrin.  相似文献   

14.
15.
16.
Dehydrogenases from all three domains of life cleave RNA   总被引:6,自引:0,他引:6  
Specific interactions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with RNA have been reported both in vitro and in vivo. We show that eukaryotic and bacterial GAPDH and two proteins from the hyperthermophilic archaeon Sulfolobus solfataricus, which are annotated as dehydrogenases, cleave RNA producing similar degradation patterns. RNA cleavage is most efficient at 60 degrees C, at MgCl(2) concentrations up to 5 mm, and takes place between pyrimidine and adenosine. The RNase active center of the putative aspartate semialdehyde dehydrogenase from S. solfataricus is located within the N-terminal 73 amino acids, which comprise the first mononucleotide-binding site of the predicted Rossmann fold. Thus, RNA cleavage has to be taken into account in the ongoing discussion of the possible biological function of RNA binding by dehydrogenases.  相似文献   

17.
The high-affinity cohesin–dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.  相似文献   

18.
Cladogenesis, coalescence and the evolution of the three domains of life   总被引:3,自引:0,他引:3  
In this article, we explore the large-scale structure of the tree of life by using a simple model with a constant number of species and rates of speciation that equal the rates of extinction. In addition, we discuss the consequences of horizontal gene transfer for the concept of a most recent common ancestor of all living organisms (cenancestor). A simple null hypothesis based on coalescence theory explains some features of the observed topologies of the tree of life. Simulations of genes and organismal lineages suggest that there was no single common ancestor that contained all the genes ancestral to those shared among the three domains of life. Each contemporary molecule has its own history that traces back to an individual molecular cenancestor. However, these molecular ancestors were likely to be present in different organisms and at different times.  相似文献   

19.
The recent solution of enteric bacterial porin structure, and new insights into the mechanism by which outer membrane receptor proteins recognize and internalize specific ligands, advocates the re-evaluation of TonB-dependent transport physiology. In this minireview we discuss the potential structural features of siderophore receptors and TonB, and use this analysis to evaluate both existing and new models of energy and signal transduction from the inner membrane to the outer membrane of gram-negative bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号