首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
FSD-1 (full sequence design 1) is a protein folded in a betabetaalpha motif, designed on the basis of the second zinc finger domain of Zif268 by a substitution of its metal coordination site with a hydrophobic core. In this work, we analyzed the possibility of introducing the DNA recognition motif of the template zinc finger (S(13)RSDH(17)) into FSD-1 sequence in order to obtain a small DNA-binding module devoid of cross-link(s) or metal cofactors. The hybrid protein was unfolded, as judged by CD and NMR criteria. To reveal the role of each of the five amino acids, which form the N-capping motif of the alpha-helix, we analyzed conformational and stability properties of eight FSD-1 mutants. We used a shielded methyl group of Leu 18 and a CD signal at 215 nm as a convenient measure of the folded state. Glu 17-->His substitution at the N(3) in S(13)NEKE(17) variant decreased the folded structure content from 90% to 25% (equivalent to 1.8 kcal * mole(-1) destabilization) by disruption of N-capping interactions, and had the most significant effect among single mutants studied here. The N(cap) Asn 14 substitution with Arg considerably decreased stability, reducing structure content from 90% to 40% (1.4 kcal * mole(-1) destabilization) by disruption of a helix-capping hydrogen bond and destabilization of a helix macrodipole. The N(1) Glu 15-->Ser mutation also produced a considerable effect (1.0 kcal * mole(-1) destabilization), again emphasizing the significance of electrostatic interactions in alpha-helix stabilization.  相似文献   

2.
The 62 residue IgG binding domain of protein L consists of a central alpha-helix packed on a four-stranded beta-sheet formed by N and C-terminal beta-hairpins. The overall topology of the protein is quite symmetric: the beta-hairpins have similar lengths and make very similar interactions with the central helix. Characterization of the effects of 70 point mutations distributed throughout the protein on the kinetics of folding and unfolding reveals that this symmetry is completely broken during folding; the first beta-hairpin is largely structured while the second beta-hairpin and helix are largely disrupted in the folding transition state ensemble. The results are not consistent with a "hydrophobic core first" picture of protein folding; the first beta-hairpin appears to be at least as ordered at the rate limiting step in folding as the hydrophobic core.  相似文献   

3.
A V Kajava 《FEBS letters》1992,302(1):8-10
A novel super-secondary structure common for many non-homological proteins is considered. This folding pattern, consisting of adjacent along the chain alpha-helix and beta-hairpin, has an aligned packing. It is found that one of the two possible 'mirror-symmetrical' topologies is observed in proteins. The alpha-helix + beta-hairpin structures have a similar pattern of hydrophobic residues in their amino acid sequences. The remaining part of a molecule or a domain is almost always located on the same side of the considered folding pattern. These results can be used in the prediction of three-dimensional protein structure and protein design.  相似文献   

4.
5.
Mini-proteins that contain <50 amino acids often serve as model systems for studying protein folding because their small size makes long timescale simulations possible. However, not all mini-proteins are created equal. The stability and structure of FSD-1, a 28-residue mini-protein that adopted the ββα zinc-finger motif independent of zinc binding, was investigated using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The broad melting transition of FSD-1, similar to that of a helix-to-coil transition, was observed by using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The N-terminal β-hairpin was found to be flexible. The FSD-1 apparent melting temperature of 41°C may be a reflection of the melting of its α-helical segment instead of the entire protein. Thus, despite its attractiveness due to small size and purposefully designed helix, sheet, and turn structures, the status of FSD-1 as a model system for studying protein folding should be reconsidered.  相似文献   

6.
7.
8.
Solution structure of a zinc finger domain of yeast ADR1   总被引:14,自引:0,他引:14  
  相似文献   

9.
U-box proteins, as well as other proteins involved in regulated protein degradation, are apparently over-represented in Arabidopsis compared with other model eukaryotes. The Arabidopsis protein AtPUB14 contains a typical U-box domain followed by an Armadillo repeat region, a domain organization that is frequently found in plant U-box proteins. In vitro ubiquitination assays demonstrated that AtPUB14 functions as an E3 ubiquitin ligase with specific E2 ubiquitin-conjugating enzymes. The structure of the AtPUB14 U-box domain was determined by NMR spectroscopy. It adopts the betabetaalphabeta fold of the Prp19p U-box and RING finger domains. In these proteins, conserved hydrophobic residues form a putative E2-binding cleft. By contrast, they contain no common polar E2 binding site motif. Two hydrophobic cores stabilize the AtPUB14 U-box fold, and hydrogen bonds and salt bridges interconnect the residues corresponding to zinc ion-coordinating residues in RING domains. Residues from a C-terminal alpha-helix interact with the core domain and contribute to stabilization. The Prp19p U-box lacks a corresponding C-terminal alpha-helix. Chemical shift analysis suggested that aromatic residues exposed at the N terminus and the C-terminal alpha-helix of the AtPUB14 U-box participate in dimerization. Thus, AtPUB14 may form a biologically relevant dimer. This is the first plant U-box structure to be determined, and it provides a model for studies of the many plant U-box proteins and their interactions. Structural insight into these interactions is important, because ubiquitin-dependent protein degradation is a prevalent regulatory mechanism in plants.  相似文献   

10.
Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed treble clef finger in this study, forms the protein structural core and is 25-45 residues long. The treble clef motif is assembled around the central zinc ion and consists of a zinc knuckle, loop, beta-hairpin and an alpha-helix. The knuckle and the first turn of the helix each incorporate two zinc ligands. Treble clef domains constitute the core of many structures such as ribosomal proteins L24E and S14, RING fingers, protein kinase cysteine-rich domains, nuclear receptor-like fingers, LIM domains, phosphatidylinositol-3-phosphate-binding domains and His-Me finger endonucleases. The treble clef finger is a uniquely versatile motif adaptable for various functions. This small domain with a 25 residue structural core can accommodate eight different metal-binding sites and can have many types of functions from binding of nucleic acids, proteins and small molecules, to catalysis of phosphodiester bond hydrolysis. Treble clef motifs are frequently incorporated in larger structures or occur in doublets. Present analysis suggests that the treble clef motif defines a distinct structural fold found in proteins with diverse functional properties and forms one of the major zinc finger groups.  相似文献   

11.
Li Y  Gupta R  Cho JH  Raleigh DP 《Biochemistry》2007,46(4):1013-1021
The C-terminal domain of ribosomal protein L9 (CTL9) is a 92-residue alpha-beta protein which contains an unusual three-stranded mixed parallel and antiparallel beta-sheet. The protein folds in a two-state fashion, and the folding rate is slow. It is thought that the slow folding may be caused by the necessity of forming this unusual beta-sheet architecture in the transition state for folding. This hypothesis makes CTL9 an interesting target for folding studies. The transition state for the folding of CTL9 was characterized by phi-value analysis. The folding of a set of hydrophobic core mutants was analyzed together with a set of truncation mutants. The results revealed a few positions with high phi-values (> or = 0.5), notably, V131, L133, H134, V137, and L141. All of these residues were found in the beta-hairpin region, indicating that the formation of this structure is likely to be the rate-limiting step in the folding of CTL9. One face of the beta-hairpin docks against the N-terminal helix. Analysis of truncation mutants of this helix confirmed its importance in folding. Mutations at other sites in the protein gave small phi-values, despite the fact that some of them had major effects on stability. The analysis indicates that formation of the antiparallel hairpin is critical and its interactions with the first helix are also important. Thus, the slow folding is not a consequence of the need to fully form the unusual three-stranded beta-sheet in the transition state. Analysis of the urea dependence of the folding rates indicates that mutations modulate the unfolded state. The folding of CTL9 is broadly consistent with the nucleation-condensation model of protein folding.  相似文献   

12.
Huang X  Zhou HX 《Biophysical journal》2006,91(7):2451-2463
Molecular dynamics simulations were performed to unfold a homologous pair of thermophilic and mesophilic cold shock proteins at high temperatures. The two proteins differ in just 11 of 66 residues and have very similar structures with a closed five-stranded antiparallel beta-barrel. A long flexible loop connects the N-terminal side of the barrel, formed by three strands (beta1-beta3), with the C-terminal side, formed by two strands (beta4-beta5). The two proteins were found to follow the same unfolding pathway, but with the thermophilic protein showing much slower unfolding. Unfolding started with the melting of C-terminal strands, leading to exposure of the hydrophobic core. Subsequent melting of beta3 and the beta-hairpin formed by the first two strands then resulted in unfolding of the whole protein. The slower unfolding of the thermophilic protein could be attributed to ion pair formation of Arg-3 with Glu-46, Glu-21, and the C-terminal. These ion pairs were also found to be important for the difference in folding stability between the pair of proteins. Thus electrostatic interactions appear to play similar roles in the difference in folding stability and kinetics between the pair of proteins.  相似文献   

13.
We demonstrated that amyloid-forming peptides could be selected from phage-displayed library via proteolysis-based selection protocol. The library of 28-residue peptides based on a sequence of the second zinc finger domain of Zif268, and computationally designed betabetaalpha peptide, FSD-1, was presented monovalently on the surface of M13 phage. The library coupled the infectivity of phage particles to proteolytic stability of a peptide introduced into the coat protein III linker. It was designed to include variants with a strong potential to fold into betabetaalpha motif of zinc finger domains, as expected from secondary structure propensities, but with no structure stabilization via zinc ion coordination. As our primary goal was to find novel monomeric betabetaalpha peptides, the library was selected for stable domains with the assumption that folded proteins are resistant to proteolysis. After less than four rounds of proteolytic selection with trypsin, chymotrypsin, or proteinase K, we obtained a number of proteolysis-resistant phage clones containing several potential sites for proteolytic attack with the proteinases. Eight peptides showing the highest proteolysis resistance were expressed and purified in a phage-free form. When characterized, the peptides possessed proteolytic resistance largely exceeding that of the second zinc finger domain of Zif268 and FSD-1. Six of the characterized peptides formed fibrils when solubilized at high concentrations. Three of them assembled into amyloids as determined through CD measurements, Congo red and thioflavin T binding, and transmission electron microscopy.  相似文献   

14.
Beta-hairpins constitute an important class of connecting protein secondary structures. Several groups have postulated that such structures form early in the folding process and serve to nucleate the formation of extended beta-sheet structures. Despite the importance of beta-hairpins in protein folding, little is known about the mechanism of formation of these structures. While it is well established that there is a complex interplay between the stability of a beta-hairpin and loop conformational propensity, loop length, and the formation of stabilizing cross-strand interactions (H-bonds and hydrophobic interactions), the influence of these factors on the folding rate is poorly understood. Peptide models provide a simple framework for exploring the molecular details of the formation of beta-hairpin structures. We have explored the fundamental processes of folding in two linear peptides that form beta-hairpin structures, having a stabilizing hydrophobic cluster connected by loops of differing lengths. This approach allows us to evaluate existing models of the mechanism of beta-hairpin formation. We find a substantial acceleration of the folding rate when the connecting loop is made shorter (i.e., the hydrophobic cluster is moved closer to the turn). Analysis of the folding kinetics of these two peptides reveals that this acceleration is a direct consequence of the reduced entropic cost of the smaller loop search.  相似文献   

15.
16.
Yoda T  Sugita Y  Okamoto Y 《Proteins》2007,66(4):846-859
G-peptide is a 16-residue peptide of the C-terminal end of streptococcal protein G B1 domain, which is known to fold into a specific beta-hairpin within 6 micros. Here, we study molecular mechanism on the stability and folding of G-peptide by performing a multicanonical replica-exchange (MUCAREM) molecular dynamics simulation with explicit solvent. Unlike the preceding simulations of the same peptide, the simulation was started from an unfolded conformation without any experimental information on the native conformation. In the 278-ns trajectory, we observed three independent folding events. Thus MUCAREM can be estimated to accelerate the folding reaction more than 60 times than the conventional molecular dynamics simulations. The free-energy landscape of the peptide at room temperature shows that there are three essential subevents in the folding pathway to construct the native-like beta-hairpin conformation: (i) a hydrophobic collapse of the peptide occurs with the side-chain contacts between Tyr45 and Phe52, (ii) then, the native-like turn is formed accompanying with the hydrogen-bonded network around the turn region, and (iii) finally, the rest of the backbone hydrogen bonds are formed. A number of stable native hydrogen bonds are formed cooperatively during the second stage, suggesting the importance of the formation of the specific turn structure. This is also supported by the accumulation of the nonnative conformations only with the hydrophobic cluster around Tyr45 and Phe52. These simulation results are consistent with high phi-values of the turn region observed by experiment.  相似文献   

17.
The recent design strategy of zinc finger peptides has mainly focused on the alpha-helix region, which plays a direct role in DNA recognition. On the other hand, the study of non-DNA-contacting regions is extremely scarce. By swapping the beta-hairpin regions between the Sp1 and GLI zinc fingers, in this study, we investigated how the beta-hairpin region of the C(2)H(2)-type zinc finger peptides contributes to the DNA binding properties. Surprisingly, the Sp1 mutant with the GLI-type beta-hairpin had a higher DNA binding affinity than that of the wild-type Sp1. The result of the DNase I footprinting analyses also showed the change in the DNA binding pattern. In contrast, the GLI zinc finger completely lost DNA binding ability as a result of exchanging the beta-hairpin region. These results strongly indicate that the beta-hairpin region appears to function as a scaffold and has an important effect on the DNA binding properties of the C(2)H(2)-type zinc finger peptides.  相似文献   

18.
19.
Kobayashi N  Honda S  Yoshii H  Munekata E 《Biochemistry》2000,39(21):6564-6571
A short C-terminal fragment of immunoglobulin-binding domain of streptococcal protein G is known to form nativelike beta-hairpin at physiological conditions. To understand the cooperative folding of the short peptide, eight Ala-substituted mutants of the fragment were investigated with respect to their structural stabilities by analyzing temperature dependence of NMR signals. On comparison of the obtained thermodynamic parameters, we found that the nonpolar residues Tyr45 and Phe52 and the polar residues Asp46 and Thr49 are crucial for the beta-hairpin folding. The results suggest a strong interaction between the nonpolar side chains that participates in a putative hydrophobic cluster and that the polar side chains form a fairly rigid conformation around the loop (46-51). We also investigated the complex formation of the mutants with N-terminal fragment at the variety of temperature to get their thermal unfolding profiles and found that the mutations on the residues Asp46 and Thr49 largely destabilized the complexes, while substitution of Asp47 slightly stabilized the complex. From these results, we deduced that both the hydrophobic cluster formation and the rigidity of the loop (46-51) cooperatively stabilize the beta-hairpin structure of the fragment. These interactions which form a stable beta-hairpin may be the initial structural scaffold which is important in the early folding events of the whole domain.  相似文献   

20.
Lee J  Shin S 《Biophysical journal》2001,81(5):2507-2516
We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号