首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacteriophage resistance plasmid pAH90 (26,490 bp) is a natural cointegrate plasmid formed via homologous recombination between the type I restriction-modification specificity determinants (hsdS) of two smaller lactococcal plasmids, pAH33 (6,159 bp) and pAH82 (20,331 bp), giving rise to a bacteriophage-insensitive mutant following phage challenge (D. O'Sullivan, D. P. Twomey, A. Coffey, C. Hill, G. F. Fitzgerald, and R. P. Ross, Mol. Microbiol. 36:866–876; 2000). In this communication we provide evidence that the recombination event is favored by phage infection. The entire nucleotide sequence of plasmid pAH90 was determined and found to contain 24 open reading frames (ORFs) responsible for phenotypes which include restriction-modification, phage adsorption inhibition, plasmid replication, cadmium resistance, cobalt transport, and conjugative mobilization. The cadmium resistance property, encoded by the cadA gene, which has an associated regulatory gene (cadC), is of particular interest, as it facilitated the selection of pAH90 in other phage-sensitive lactococci after electroporation. In addition, we report the identification of a group II self-splicing intron bounded by two exons which have the capacity to encode a relaxase implicated in conjugation in gram-positive bacteria. The functionality of this intron was evident by demonstrating splicing in vivo. Given that pAH90 encodes potent phage defense systems which act at different stages in the phage lytic cycle, the linkage of these with a food-grade selectable marker on a replicon that can be mobilized among lactococci has significant potential for natural strain improvement for industrial dairy fermentations which are susceptible to phage inhibition.  相似文献   

2.
Bacteriophage Ecology in Commercial Sauerkraut Fermentations   总被引:4,自引:2,他引:2       下载免费PDF全文
Knowledge of bacteriophage ecology in vegetable fermentations is essential for developing phage control strategies for consistent and high quality of fermented vegetable products. The ecology of phages infecting lactic acid bacteria (LAB) in commercial sauerkraut fermentations was investigated. Brine samples were taken from four commercial sauerkraut fermentation tanks over a 60- or 100-day period in 2000 and 2001. A total of 171 phage isolates, including at least 26 distinct phages, were obtained. In addition, 28 distinct host strains were isolated and identified as LAB by restriction analysis of the intergenic transcribed spacer region and 16S rRNA sequence analysis. These host strains included Leuconostoc, Weissella, and Lactobacillus species. It was found that there were two phage-host systems in the fermentations corresponding to the population shift from heterofermentative to homofermentative LAB between 3 and 7 days after the start of the fermentations. The data suggested that phages may play an important role in the microbial ecology and succession of LAB species in vegetable fermentations. Eight phage isolates, which were independently obtained two or more times, were further characterized. They belonged to the family Myoviridae or Siphoviridae and showed distinct host ranges and DNA fingerprints. Two of the phage isolates were found to be capable of infecting two Lactobacillus species. The results from this study demonstrated for the first time the complex phage ecology present in commercial sauerkraut fermentations, providing new insights into the bioprocess of vegetable fermentations.  相似文献   

3.
The bacteriophage resistance plasmid pAH90 (26,490 bp) is a natural cointegrate plasmid formed via homologous recombination between the type I restriction-modification specificity determinants (hsdS) of two smaller lactococcal plasmids, pAH33 (6,159 bp) and pAH82 (20,331 bp), giving rise to a bacteriophage-insensitive mutant following phage challenge (D. O'Sullivan, D. P. Twomey, A. Coffey, C. Hill, G. F. Fitzgerald, and R. P. Ross, Mol. Microbiol. 36:866-876; 2000). In this communication we provide evidence that the recombination event is favored by phage infection. The entire nucleotide sequence of plasmid pAH90 was determined and found to contain 24 open reading frames (ORFs) responsible for phenotypes which include restriction-modification, phage adsorption inhibition, plasmid replication, cadmium resistance, cobalt transport, and conjugative mobilization. The cadmium resistance property, encoded by the cadA gene, which has an associated regulatory gene (cadC), is of particular interest, as it facilitated the selection of pAH90 in other phage-sensitive lactococci after electroporation. In addition, we report the identification of a group II self-splicing intron bounded by two exons which have the capacity to encode a relaxase implicated in conjugation in gram-positive bacteria. The functionality of this intron was evident by demonstrating splicing in vivo. Given that pAH90 encodes potent phage defense systems which act at different stages in the phage lytic cycle, the linkage of these with a food-grade selectable marker on a replicon that can be mobilized among lactococci has significant potential for natural strain improvement for industrial dairy fermentations which are susceptible to phage inhibition.  相似文献   

4.
The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages but still attain high densities in their presence – because bacteria enter a transient state of reduced adsorption. Importantly, these mechanisms may be cryptic and inapparent prior to the addition of phage yet result in a rapid rebound of bacterial density after phage are introduced. We describe mathematical models of these processes and suggest how different types of this ‘phenotypic’ resistance may be elucidated. We offer preliminary in vitro studies of a previously characterized E. coli model system and Campylobacter jejuni illustrating apparent phenotypic resistance. As phenotypic resistance may be specific to the receptors used by phages, awareness of its mechanisms may identify ways of improving the choice of phages for therapy. Phenotypic resistance can also explain several enigmas in the ecology of phage-bacterial dynamics. Phenotypic resistance does not preclude the evolution of genetic resistance and may often be an intermediate step to genetic resistance.  相似文献   

5.
Abstract Genetic studies with lactic streptococci have identified a variety of plasmids coding for systems that interfere with phage adsorption, direct restriction and modification activities, and disrupt various stages in the phage lytic cycle. This review describes mechanisms of phage defense that are plasmid-directed in lactic streptococci, examines the physical and genetic properties of the plasmids involved, and discusses genetic strategies for construction of phage-insensitive starter cultures for dairy fermentations.  相似文献   

6.
Marine viruses are an important component of the microbial food web, influencing microbial diversity and contributing to bacterial mortality rates. Resistance to cooccurring cyanophages has been reported for natural communities of Synechococcus spp.; however, little is known about the nature of this resistance. This study examined the patterns of infectivity among cyanophage isolates and unicellular marine cyanobacteria (Synechococcus spp.). We selected for phage-resistant Synechococcus mutants, examined the mechanisms of phage resistance, and determined the extent of cross-resistance to other phages. Four strains of Synechococcus spp. (WH7803, WH8018, WH8012, and WH8101) and 32 previously isolated cyanomyophages were used to select for phage resistance. Phage-resistant Synechococcus mutants were recovered from 50 of the 101 susceptible phage-host pairs, and 23 of these strains were further characterized. Adsorption kinetic assays indicate that resistance is likely due to changes in host receptor sites that limit viral attachment. Our results also suggest that receptor mutations conferring this resistance are diverse. Nevertheless, selection for resistance to one phage frequently resulted in cross-resistance to other phages. On average, phage-resistant Synechococcus strains became resistant to eight other cyanophages; however, there was no significant correlation between the genetic similarity of the phages (based on g20 sequences) and cross-resistance. Likewise, host Synechococcus DNA-dependent RNA polymerase (rpoC1) genotypes could not be used to predict sensitivities to phages. The potential for the rapid evolution of multiple phage resistance may influence the population dynamics and diversity of both Synechococcus and cyanophages in marine waters.  相似文献   

7.
Resource availability can affect the coevolutionary dynamics between host and parasites, shaping communities and hence ecosystem function. A key finding from theoretical and in vitro studies is that host resistance evolves to greater levels with increased resources, but the relevance to natural communities is less clear. We took two complementary approaches to investigate the effect of resource availability on the evolution of bacterial resistance to phages in soil. First, we measured the resistance and infectivity of natural communities of soil bacteria and phage in the presence and absence of nutrient-providing plants. Second, we followed the real-time coevolution between defined bacteria and phage populations with resource availability manipulated by the addition or not of an artificial plant root exudate. Increased resource availability resulted in increases in bacterial resistance to phages, but without a concomitant increase in phage infectivity. These results suggest that phages may have a reduced impact on the control of bacterial densities and community composition in stable, high resource environments.  相似文献   

8.
The first complete genome sequence of a phage infecting Weissella cibaria (Weissella kimchii) is presented. The bacteriophage ϕYS61 was isolated from kimchi, a Korean fermented vegetable dish. Bacteriophages are recognized as a serious problem in industrial fermentations; however, ϕYS61 differed from many virulent phages associated with food fermentations since it was difficult to propagate and was very susceptible to resistance development. Sequence analysis revealed that ϕYS61 resembles Podoviridae of the subfamily Picovirinae. Within the subfamily Picovirinae, the ϕ29-like phages have been extensively studied, and their terminal protein-primed DNA replication is well characterized. Our data strongly suggest that ϕYS61 also replicates by a protein-primed mechanism. Weissella phage ϕYS61 is, however, markedly different from members of the Picovirinae with respect to genome size and morphology. Picovirinae are characterized by small (approximately 20-kb) genomes which contrasts with the 33,594-bp genome of ϕYS61. Based on electron microscopy analysis, ϕYS61 was classified as a member of the Podoviridae of morphotype C2, similar to the ϕ29-like phages, but its capsid dimensions are significantly larger than those reported for these phages. The novelty of ϕYS61 was also emphasized by the low number of open reading frames (ORFs) showing significant similarity to database sequences. We propose that the bacteriophage ϕYS61 should represent a new subfamily within the family Podoviridae.  相似文献   

9.
Flavobacterium psychrophilum is an important fish pathogen in salmonid aquaculture worldwide. Due to increased antibiotic resistance, pathogen control using bacteriophages has been explored as a possible alternative treatment. However, the effective use of bacteriophages in pathogen control requires overcoming the selection for phage resistance in the bacterial populations. Here, we analyzed resistance mechanisms in F. psychrophilum after phage exposure using whole-genome sequencing of the ancestral phage-sensitive strain 950106-1/1 and six phage-resistant isolates. The phage-resistant strains had all obtained unique insertions and/or deletions and point mutations distributed among intergenic and genic regions. Mutations in genes related to cell surface properties, gliding motility, and biosynthesis of lipopolysaccharides and cell wall were found. The observed links between phage resistance and the genetic modifications were supported by direct measurements of bacteriophage adsorption rates, biofilm formation, and secretion of extracellular enzymes, which were all impaired in the resistant strains, probably due to superficial structural changes. The clustered regularly interspaced short palindromic repeat (CRISPR) region was unaffected in the resistant isolates and thus did not play a role as a resistance mechanism for F. psychrophilum under the current conditions. All together, the results suggest that resistance in F. psychrophilum was driven by spontaneous mutations, which were associated with a number of derived effects on the physiological properties of the pathogen, including reduced virulence under in vitro conditions. Consequently, phage-driven physiological changes associated with resistance may have implications for the impact of the pathogen in aquaculture, and these effects of phage resistance on host properties are therefore important for the ongoing exploration of phage-based control of F. psychrophilum.  相似文献   

10.
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.  相似文献   

11.
AIMS: To study the ability of the plasmid-encoded restriction and modification (R/M) system LlaAI to function as a bacteriophage resistance mechanism in Lactococcus lactis during milk fermentations. METHODS AND RESULTS: Plasmid pAIcat4, carrying the R/M system LlaAI and a chloramphenicol resistance cassette, was introduced into the plasmid-free strain L. lactis MG1614 and the industrial strain L. lactis 964. By measuring changes in conductivity the influence of different phage on the growth was determined. CONCLUSIONS: The plasmid-encoded R/M system LlaAI significantly improves the bacteriophage resistance of L. lactis during milk fermentations. SIGNIFICANCE AND IMPACT OF THE STUDY: It is essential to determine the potential of a phage defence mechanism in L. lactis starter culture strains during growth in milk before steps are taken to improve starter cultures. This study shows that LlaAI is useful for improvement of starter cultures.  相似文献   

12.
Successful large-scale fermentations of the bacterium Serratia entomophila for use in biological control of the soil-dwelling insect Costelytra zealandica has required the development of a phage-resistant mutant, BC4B. We report our investigations into S. entomophila phages and the nature of the phage resistance mechanism of strain BC4B. The parental strain of BC4B, A1MO2, was found to contain two previously unidentified prophages, (phi)9A and (phi)9B, which were UV inducible and also released spontaneously in large numbers. BC4B was shown to be completely cured of (phi)9A. Single lysogens of (phi)9A and (phi)9B were not homoimmune to any other S. entomophila phages. However, on the basis of DNA-DNA homology, all S. entomophila phages except (phi)CW3 were shown to have significant regions of homology and also packaged their DNA via pac-like mechanisms. The failure of phage particles to adsorb was identified as the basis of phage resistance in BC4B. In addition, it was demonstrated that all known S. entomophila phages are naturally temperature sensitive.  相似文献   

13.
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage–host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage–host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages’ host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.

This study presents the BASEL collection of phages that infect the model bacterium Escherichia coli; this resource for the community is representative of natural E. coli phage diversity and has been extensively characterized phenotypically and genomically.  相似文献   

14.
Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage.Bacteriophages are the most abundant biological entities (estimated to be on the order of ≥1031) on the planet (9, 18). Phages are ubiquitous in nature and can influence the microbial ecology and genetics of bacteria. Because of their small (usually <60 kb) genomes, phages can provide an excellent model system for studying many biological processes, including DNA replication and genetic evolution. Despite this, many phages remain uncharacterized. Very little is known about phage diversity and phage-host interactions owing to the small number of sequenced phages. Furthermore, the existing phage sequence database is highly biased toward a limited spectrum of phage hosts, namely, Enterobacteriaceae, Bacillus, Staphylococcus, Pseudomonas, Vibrio cholerae, Lactococcus, Streptococcus thermophilus, and S. pyogenes. The majority of host species for sequenced phages are either pathogenic or dairy-related bacteria. Most of the newly sequenced phage genes have no assigned functions or matches in the GenBank database (7).Vegetable fermentations rely on a variety of lactic acid bacteria (LAB). The proper succession of LAB directly determines the quality and safety of the final fermentation products. Leuconostoc mesenteroides initiates most vegetable fermentations. It converts the sugars in vegetables (primarily glucose and fructose) to lactic acid, acetic acid, ethanol, CO2, and other flavor compounds (22, 58, 59, 60, 61). Acid production lowers the pH of fermenting vegetables and inhibits the growth of many microorganisms, including pathogens. CO2 production promotes the establishment of an anaerobic environment which favors the growth of other LAB. The metabolites produced by L. mesenteroides largely determine the flavor characteristics of the final products. As fermentation proceeds, L. mesenteroides rapidly dies off. Other LAB, including Lactobacillus plantarum, take over and complete the fermentation.It has been a widely held view that the disappearance of L. mesenteroides and the subsequent bacterial succession in sauerkraut fermentations are due to the inhibitory effect of acids that accumulate during fermentation (54, 61). Little is known about other factors that may play a role in bacterial succession. Recent studies have shown that phages are present in the vegetable fermentations (4, 47, 48, 74, 75). Because of the rapid lytic cycle of these phages, they may significantly impact starter cultures and bacterial succession in vegetable fermentations (56). Phages active against L. mesenteroides have been isolated and characterized (48); however, genome sequences have not been reported.L. mesenteroides phage 1-A4 (designated Φ1-A4) is of particular interest. Φ1-A4 is a lytic phage that was repeatedly isolated during the initial stages of a commercial sauerkraut fermentation. As a result, Φ1-A4 may significantly influence the survival of L. mesenteroides and flavor development during sauerkraut fermentation. It was found that Φ1-A4 infects at least three different strains of L. mesenteroides (48), and therefore it may also promote genetic exchange and genetic diversity in microbial communities (34).The objectives of this study were to determine and analyze the complete genome sequence of Φ1-A4, to experimentally identify the structural protein genes, and to compare the genome organization with that of related phages. To our knowledge, this study represents the first complete genomic and molecular characterization of Leuconostoc phage. The results from this study may provide new insights into our understanding of phage genetics. This study may aid the development of phage control technologies in vegetable and other fermentations that are susceptible to phage attack.  相似文献   

15.
Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins), which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB), none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II) in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes.  相似文献   

16.
The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches.  相似文献   

17.
Roseobacter is a dominant lineage in the marine environment. This group of bacteria is diverse in terms of both their phylogenetic composition and their physiological potential. Roseobacter denitrificans OCh114 is one of the most studied bacteria of the Roseobacter lineage. Recently, a lytic phage (RDJLΦ1) that infects this bacterium was isolated and a mutant strain (M1) of OCh114 that is resistant to RDJLΦ1 was also obtained. Here, we investigate the mechanisms supporting phage resistance of M1. Our results excluded the possibilities of several phage resistance mechanisms, including abortive infection, lysogeny, and the clustered regularly interspaced short palindromic repeats (CRISPRs) related mechanism. Adsorption kinetics assays revealed that adsorption inhibition might be a potential cause for the phage resistance of M1. Comparative proteomic analysis of M1 and OCh114 revealed significant changes in the membrane protein compliment of these bacteria. Five membrane proteins with important biological functions were significantly down-regulated in the phage-resistant M1. Meanwhile, several outer membrane porins with different modifications and an OmpA family domain protein were markedly up-regulated. We hypothesize that the down-regulated membrane proteins in M1 may serve as the potential phage receptors, whose absence prevented the adsorption of phage RDJLΦ1 to host cells and subsequent infection.  相似文献   

18.
Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a β-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages.  相似文献   

19.
The struggle of humans versus pathogens is a never ending battle. Since the discovery of antibiotics humans have tipped the scales in their favour, but today bacteria are nullifying this advantage by developing resistance mechanisms against these molecules. The plethora of different antibiotics active against pathogens is shrinking while the discovery of new molecules is arduous. Especially the development of drugs active against Gram? pathogens continues slowly. New strategies to discover novel, potent antibiotics are hence needed. Adopting the optimistic view of technological singularity, innovative and disruptive approaches are required and hence proposed to lift the current conundrum. In this review, questions are answered on where and how to look for new natural product hit molecules with antibacterial activity, on how the field of synthetic biology can aid the contemporary pharmaceutical challenge and whether we are ready to make the transition towards other approaches, such as narrow-spectrum antibiotics and phage therapy.  相似文献   

20.
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus   总被引:4,自引:0,他引:4  
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号