首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report observational data on behavioral laterality in 10 captive bonobos (Pan paniscus)at the San Diego Zoo. The unimanual measures include carrying, leading limb in locomotion, self-touching, face-touching, reaching, and gestures. We also recorded bimanual feeding in these subjects. A significant population level left-hand bias exists for carrying. Right-hand biases occur for leading limb in locomotion and gestures. During bimanual feeding, the bonobos hold food items with the left hand while feeding with the right hand. Overall, bonobos exhibit behavioral asymmetries that are similar to previous findings in other pongid ape species. The asymmetries in gestures and bimanual feeding represent novel findings with theoretical implications for the origins of tool use and language.  相似文献   

2.
We tested the hand preferences of 20 chimpanzees (Pan troglodytes) for a haptic task requiring individuals to search for grapes in an opaque bucket filled with water. We compared these data to the hand preferences displayed by the same chimpanzees during reaching and bimanual feeding tasks. The chimpanzees displayed no significant hand preference for the reaching or bimanual feeding tasks, but exhibited a right-hand preference while performing the haptic task. In contrast, New and Old World monkeys display left-hand preferences for similar tasks. We discuss the relevance of these findings for the evolution of handedness in primates.  相似文献   

3.
Birth attendance has been proposed as a distinguishing feature of humans (Homo sapiens) and it has been linked to the difficulty of the delivery process in our species. Here, we provide the first quantitative study based on video-recordings of the social dynamics around three births in captive bonobos (Pan paniscus), human closest living relative along with the chimpanzee. We show that the general features defining traditional birth attendance in humans can also be identified in bonobos. As in humans, birth in bonobos was a social event, where female attendants provided protection and support to the parturient until the infant was born. Moreover, bystander females helped the parturient during the expulsive phase by performing manual gestures aimed at holding the infant. Our results on bonobos question the traditional view that the “obligatory” need for assistance was the main driving force leading to sociality around birth in our species. Indeed, birth in bonobos is not hindered by physical constraints and the mother is self-sufficient in accomplishing the delivery. Although further studies are needed both in captivity and in the wild, we suggest that the similarities observed between birth attendance in bonobos and humans might be related to the high level of female gregariousness in these species. In our view, the capacity of unrelated females to form strong social bonds and cooperate could have represented the evolutionary pre-requisite for the emergence of human midwifery.  相似文献   

4.
Limited data are available on hemispheric lateralization in wild orang-utans. There has been only one previous investigation of limb preferences in wild orang-utans [Yeager, 1991]. We examined the lateralization of limb use in wild Bornean orang-utans (Pongo pygmaeus pygmaeus) with the aim of providing more insight into possible hemispheric specialization in wild nonhuman primates. Here, we report in detail on limb use and preference during arboreal locomotion between trees (N=6) and on feeding involving one limb (N=8) and two limbs (N=6). We distinguished between locomotion between overlapping trees (Type I) and locomotion involving gap crossing (Types II and III). For locomotion Type I, the six orang-utans showed no leading hand preference, however for locomotion Types II and III, all six showed significant right-hand preferences. All eight orang-utans showed individual hand preferences for reaching for food, but no significant group bias was found. Limb preferences for feeding involving two limbs (hand-hand or hand-foot) differed between juveniles (right hand-right foot), adult females (left hand-right hand) and adult males (right hand-left hand). Although not present for all tasks, the results indicate that orang-utans do show evidence of hemispheric specialization, but the use of the hands is not under a strong lateralized hemispheric control and is adaptable.  相似文献   

5.
Understanding the evolutionary origins of hemispheric specialization remains a topic of considerable interest in a variety of scientific disciplines. Whether nonhuman primates exhibit population-level limb preferences continues to be a controversial topic. In this study, limb preferences for ascending and descending locomotion were assessed as a means of examining the hypothesis that asymmetries in forelimb bones might be attributed to asymmetries in posture. The results indicated that captive chimpanzees showed a population-level leftward asymmetry in descending locomotion but no group bias for ascending locomotion. The results are consistent with previous behavioral studies in captive chimpanzees as well as studies on skeletal asymmetries of the forelimbs of chimpanzees.  相似文献   

6.
Although the level of handedness in humans varies cross-culturally, humans are generally described as right-handed, which has been considered a uniquely human trait. Recently, captive chimpanzees (Pan troglodytes) have been shown to exhibit right-hand preference when performing bimanual but not unimanual tasks. Less clear is whether this pattern also occurs in wild chimpanzees and other African apes. Using videos (N = 49) of six wild western gorillas (Gorilla gorilla gorilla) feeding on termites at the Mondika Research Center (Republic of Congo), we tested whether they exhibit hand preference when performing unimanual, i.e., reaching for termite mound pieces; bimanual, i.e., “termite tapping”: rhythmically shaking a piece of termite mound with the dominant hand and collecting the termites in the other hand tasks; or hand transfer prior to bimanual tasks, i.e., transferring a piece of termite mound from one hand to the other. All individuals exhibited exclusive hand preference when performing the bimanual tasks, with five of six gorillas preferring the right hand. Conversely, most individuals did not show any manual preference during the unimanual task. In addition, hand preference during hand transfer revealed clear hand dominance of similar strength and direction of those shown for the bimanual task, suggesting that this measure is as sensitive as the bimanual task itself. Thus, we propose “termite feeding” as a novel task to be considered in future hand-preference studies in wild western gorillas. Our results are in concordance with those for chimpanzees and captive gorillas showing hemispheric specialization for bimanual actions in apes.  相似文献   

7.
The literature on manual laterality in nonhuman primates provides inconsistent and inconclusive findings and is plagued by methodological issues (e.g., small samples, inconsistency in methods, inappropriate measures) and gaps. Few data are available on bonobos and these are only from small samples and for relatively simple tasks. We examined laterality in a large sample of bonobos for a complex task. We tested 48 bonobos from Lola Ya Bonobo sanctuary (DR Congo) in an extension of our previous study of 29 bonobos from 3 European zoos. We assessed hand preferences using the tube task, which involves bimanual coordination: one hand extracts food from a tube that is held by the other hand. This task is a good measure of laterality and it has been used in other studies. We recorded events (frequency) and independent bouts of food extraction. We found significant manual laterality, which was not influenced by the settings or rearing history. We observed little effect of sex and found an influence of age, with greater right hand use in adults. The laterality was marked, with strong preferences and most individuals being lateralized (when analyzing frequency). We found individual preferences, with no group-level bias, even when we combined the data from the sanctuary and the zoos to enlarge the sample to 77. These first data, for a complex task and based on a large sample, are consistent with previous findings in bonobos and in other nonhuman primate species for a variety of tasks. They suggest that, despite particular features in terms of proximity to humans, language and bipedalism, bonobos do not display a laterality that is more marked or more similar to human handedness compared to that of other nonhuman primate species.  相似文献   

8.
Arboreal, and in particular suspensory, postures may elicit a preference for the strongest limb to be used in postural support in large bodied primates. However, selection may have favored ambilaterality rather than a preference for a particular hand in chimpanzees (Pan troglodytes) fishing arboreally for ants. To investigate the influence of arboreality on hand preference we recorded handedness in seven captive bonobos (Pan paniscus) manipulating a foraging device during terrestrial and arboreal postures in a symmetrical environment, observing 2726 bouts of manipulation. When accessing the foraging device in the arboreal position the bonobos adopted predominantly suspensory postures. There was no population level hand preference for manipulating the foraging device in either the terrestrial or arboreal positions. However, four of seven individuals that interacted with the foraging devices showed a significant preference for one hand (two were left handed, two were right handed) when manipulating the foraging device in the arboreal position whereas only one individual (left handed) showed a preference in the terrestrial position. This suggests that individuals may have a preferred or strongest limb for postural support in a symmetrical arboreal environment, resulting in a bias to use the opposite hand for manipulation. However, the hand that is preferred for postural support differs between individuals. Although our sample is for two captive groups at the same zoo, our findings suggest that the demand of maintaining arboreal postures and environmental complexity influence hand preference.  相似文献   

9.
A practical approach to understanding lateral asymmetries in body, brain, and cognition would be to examine the performance advantages/disadvantages associated with the corresponding functions and behavior. In the present study, we examined whether the division of labor in hand usage, marked by the preferential usage of the two hands across manual operations requiring maneuvering in three-dimensional space (e.g., reaching for food, grooming, and hitting an opponent) and those requiring physical strength (e.g., climbing), is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiata. We determined the extent to which the macaques exhibit laterality in hand usage in an experimental unimanual and a bimanual food-reaching task, and the extent to which manual laterality is associated with hand performance in an experimental hand-performance-differentiation task. We observed negative relationships between (a) the latency in food extraction by the preferred hand in the hand-performance-differentiation task (wherein, lower latency implies higher performance), the preferred hand determined using the bimanual food-reaching task, and the normalized difference between the performance of the two hands, and (b) the normalized difference between the performance of the two hands and the absolute difference between the laterality in hand usage in the unimanual and the bimanual food-reaching tasks (wherein, lesser difference implies higher manual specialization). Collectively, these observations demonstrate that the division of labor between the two hands is associated with higher hand performance.  相似文献   

10.
Whether or not nonhuman primates exhibit population-level handedness remains a topic of considerable scientific debate. Here, we examined handedness for coordinated bimanual actions in a sample of 777 great apes including chimpanzees, bonobos, gorillas, and orangutans. We found population-level right-handedness in chimpanzees, bonobos and gorillas, but left-handedness in orangutans. Directional biases in handedness were consistent across independent samples of apes within each genus. We suggest that, contrary to previous claims, population-level handedness is evident in great apes but differs among species as a result of ecological adaptations associated with posture and locomotion. We further suggest that historical views of nonhuman primate handedness have been too anthropocentric, and we advocate for a larger evolutionary framework for the consideration of handedness and other aspects of hemispheric specialization among primates.  相似文献   

11.
We list the animal species, mushrooms and honey, which are consumed by bonobos (Pan paniscus)in the Ikela region (Lilungu), Republic of Zaire, and compare these data with those obtained from other populations of bonobos: Lomako, Yalosidi, and Wamba. Lilungu bonobos consume earthworms more regularly than bonobos do at other localities. They also eat larvae, termites, and ants, but they probably do not consume invertebrates as regularly as chimpanzees do. Lilungu bonobos ate a squirrel and a chiropteran. We report our detailed observations of bonobo foraging, feeding and manipulating foods, including washing some items and complicated handling operations. We note intra- and intergroup differences in the consumption of specific foods and in the way they are handled by the females.  相似文献   

12.
The ratio of the second-to-fourth finger lengths (2D:4D) has been proposed as an indicator of prenatal sex differentiation. However, 2D:4D has not been studied in the closest living human relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). We report the results from 79 chimpanzees and 39 bonobos of both sexes, including infants, juveniles, and adults. We observed the expected sex difference in 2D:4D, and substantially higher, more human-like, 2D:4D in bonobos than chimpanzees. Previous research indicates that sex differences in 2D:4D result from differences in prenatal sex hormone levels. We hypothesize that the species difference in 2D:4D between bonobos and chimpanzees suggests a possible role for early exposure to sex hormones in the development of behavioral differences between the two species.  相似文献   

13.
We compared sex differences in behaviors leading to copulation of chimpanzees (Pan troglodytes) in the Kalinzu Forest, Uganda with those of bonobos (Pan paniscus) at Wamba, D.R. Congo, using the same definition. Female chimpanzees were more likely to initiate copulation than female bonobos. While most of copulations (96%) were initiated by males in bonobos, among chimpanzees only 63% of copulations were initiated by males. Female bonobos initiated an interaction leading to copulation when males approached them within a short distance. On the other hand, both male and female chimpanzees initiated behavior at a longer distance. Higher proceptivity and a higher copulation rate during the maximal swelling period of female chimpanzees might suggest that they gain greater benefits from a high frequency of copulations than do female bonobos.  相似文献   

14.
Cebus and Pan appear to be a remarkable example of evolutionary convergence in behavioral ecology. We examine their apparently analogous solutions to problems posed by laterality of hand function and elementary technology. We scrutinize appropriate published data in a meta-analysis, focusing on Cebus apella and C. capucinus and on Pan paniscus and P. troglodytes. We compare behavioral data in terms of captive versus wild, and tool use versus non-tool use, but notable gaps exist in the data, especially for bonobos. Cebus and Pan spp. are equivalent tool users in captivity, but chimpanzees are notably more extensively so in nature. For hand preference, captive bonobos and wild and captive chimpanzees show ambipreference for non-tool-use patterns. For both Cebus spp. and Pan spp., there is a tendency for individuals to be committed exclusively to one hand or the other for tool use. The data for laterality of hand function fit consistently into the five-level model proposed by McGrew and Marchant (1996).  相似文献   

15.
Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees.  相似文献   

16.
Mammalian locomotion is characterized by the frequent use of in-phase gaits in which the footfalls of the left and right fore- or hindlimbs are unevenly spaced in time. Although previous studies have identified a functional differentiation between the first limb (trailing limb) and the second limb (leading limb) to touch the ground during terrestrial locomotion, the influence of a horizontal branch on limb function has never been explored. To determine the functional differences between trailing and leading forelimbs during locomotion on the ground and on a horizontal branch, X-ray motion analysis and force measurements were carried out in two European red squirrels (Sciurus vulgaris, Rodentia). The differences observed between trailing and leading forelimbs were minimal during terrestrial locomotion, where both limbs fulfill two functions and go through a shock-absorbing phase followed by a generating phase. During locomotion on a horizontal branch, European red squirrels reduce speed and all substrate reaction forces transmitted may be due to the reduction of vertical oscillation of the center of mass. Further adjustments during locomotion on a horizontal branch differ significantly between trailing and leading forelimbs and include limb flexion, lead intervals, limb protraction and vertical displacement of the scapular pivot. Consequently, trailing and leading forelimbs perform different functions. Trailing forelimbs function primarily as shock-absorbing elements, whereas leading forelimbs are characterized by a high level of stiffness. This functional differentiation indicates that European red squirrels ‘test’ the substrate for stability with the trailing forelimb, while the leading forelimb responds to or counteracts swinging or snapping branches.  相似文献   

17.
The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor‐hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor‐hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so‐called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills. Am. J. Primatol. 71:988–997, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Many primates use objects in courtship and dominance displays, but little is known about such displays in other contexts. Bonobos (Pan paniscus) frequently perform “branch drag” displays in which an individual runs along the ground while holding a branch in one hand. We aim to understand how bonobos use branch drags in the context of group travel. Using observational data collected from a community of free-ranging bonobos at the Lui Kotale field site in the Democratic Republic of Congo we compare group travel that occurs after branch drags to travel in the absence of branch drags. We found that bonobos are much more likely to perform branch drags before travel to a distant feeding tree than before shorter bouts of travel. At some locations, bonobos also perform branch drags before a change in travel direction. Our results suggest that in specific contexts branch drags may provide information about upcoming group travel, and likely function to coordinate group movement.  相似文献   

19.
Predominance of right‐handedness has historically been considered as a hallmark of human evolution. Whether nonhuman primates exhibit population‐level manual bias remains a controversial topic. Here, we investigated the hypothesis that bimanual coordinated activities may be a key‐behavior in our ancestors for the emergence and evolution of human population‐level right‐handedness. To this end, we collected data on hand preferences in 35 captive gorillas (Gorilla gorilla) during simple unimanual reaching and for bimanual coordinated feeding. Unimanual reaching consisted of grasping food on the ground, while bimanual feeding consisted of using one hand for holding a food and processing the food item by the opposite hand. No population‐level manual bias was found for unimanual actions but, in contrast, gorillas exhibited a significant population‐level right‐handedness for the bimanual actions. Moreover, the degree of right‐handedness for bimanual feeding exceeds any other known reports of hand use in primates, suggesting that lateralization for bimanual feeding is robust in captive gorillas. The collective evidence is discussed in the context of potential continuity of handedness between human and nonhuman primates. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) diverged into distinct species approximately 1.7 million years ago when the ancestors of modern-day bonobo populations were separated by the Congo River. This geographic boundary separates the two species today and the associated ecological factors, including resource distribution and feeding competition, have likely shaped the divergent social behavior of both species. The most striking behavioral differences pertain to between group interactions in which chimpanzees behave aggressively towards unfamiliar conspecifics, while bonobos display remarkable tolerance. Several hypotheses attempt to explain how different patterns of social behavior have come to exist in the two species, some with specific genetic predictions, likening the evolution of bonobos to a process of domestication. Here, we utilize 73 ape genomes and apply linkage haplotype homozygosity and structure informed allele frequency differentiation methods to identify positively selected regions in bonobos since their split from a common pan ancestor to better understand the environment and processes that resulted in the behavioral differences observed today. We find novel evidence of selection in genetic regions that aid in starch digestion (AMY2) along with support for two genetic predictions related to self-domestication processes hypothesized to have occurred in the bonobo. We also find evidence for selection on neuroendocrine pathways associated with social behavior including the oxytocin, serotonin, and gonadotropin releasing hormone pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号