首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oriental mole cricket Gryllotalpa orientalis exhibits variation in wing dimorphism. In an Okinawa population, no short‐winged individuals were observed, and wing dimorphism has not been detected. Flight behavior of G. orientalis was observed from April to October in Okinawa. In contrast, a Hyogo population exhibited seasonal wing dimorphism and long‐winged individuals appear from June to September. The flight period of the long‐winged morph coincided with this period. Short‐winged individuals appeared from September to the following June and they never fly. Both populations showed univoltine life cycles. Considering the possible flight period, wing pattern and life cycle of mole crickets in these two areas, it is presumed that flightlessness is expected to arise when adults can not experience suitable temperatures for flight activity.  相似文献   

2.
3.
A short‐winged morph was recently discovered in the migratory locust, Locusta migratoria. It is different from the normal, long‐winged morph not only in forewing length but also in hind femur length, displaying a dimorphism. To understand the significance of this dimorphism, other morphological characters were compared between the two morphs, and the time of differentiation of wing‐pad length was investigated. Wing weights were heavier in the long‐winged morph than in the short‐winged morph. This result showed that the short‐winged morph is not formed by a failure of wing expansion. No obvious morph‐specific differences were observed in wing venation, but wing allometry studies indicated that the distal areas of the fore‐ and hindwings were disproportionally reduced in the short‐winged morph compared to the long‐winged morph. The morphological differentiation of the wing pad between the two morphs was observed at the penultimate nymphal stage. The flight muscle was well developed in the two morphs, and no sign of flight muscle histolysis was detected in either morph after adult emergence. An analysis of adult body dimensions suggested that the density‐dependent phase shifts known for the long‐winged morph of this locust were also exhibited by the short‐winged morph, demonstrating that these shifts are not specific to the migratory long‐winged morph.  相似文献   

4.
Berend Aukema 《Oecologia》1991,87(1):118-126
Summary In two successive years the fecundity of the carabid beetles Calathus (Neocalathus) cinctus, C. (N.) melanocephalus and C. (N.) mollis was studied in relation to wing-morph and temperature. Differences were found between the three species in both egg production and timing and length of the oviposition period. In all species the fecundity of laboratory bred beetles was significantly higher than that of females collected in the field. Long-winged females of both cinctus and melanocephalus had significantly higher egg production than short-winged females, and they also tended to produce eggs over a longer period. In mollis only the fecundity of the long-winged morph was established. The observed lower relative fitness of the short-winged morph in both cinctus and melanocephalus contradicts the supposed increase of the frequency of this morph in ageing, more or less isolated, populations of these species. The loss of long-winged genotypes, resulting from flight activities, is considered the most plausible cause of the increase of short-winged beetles in ageing populations. The higher fecundity of macropterous females makes them especially suited for (re)establishing populations.Communication No. 429 of the Biological Station WijsterPresent address and address for offprint requests: Kortenburg 31, NL-6871 ND Rentum  相似文献   

5.
In many insect taxa, there is a well‐established trade‐off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade‐off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long‐winged species was significantly higher than that of short‐winged and wingless species (p < .01), while GSI of wingless species was higher than that of long‐winged and short‐winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = −.2649 for male and −.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long‐winged individuals are flight capable at the expense of reproduction, while short‐winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade‐off between flight and reproduction in Acridoidea.  相似文献   

6.
Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity). The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare). We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects) inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.  相似文献   

7.
Many species of insects exhibit wing dimorphism, one morph havingfully developed wings and the other morph having reduced wingsand being incapable of flight. These wing dimorphisms providevisible manifestations of migratory polymorphisms. Since wingedindividuals do not, in principle, have to fly, the existenceof forms with reduced wings suggests that there is a tradeoffbetween flight capability and other fitness components. Comparisonsof the life histories of the fully winged and wing reduced morphsdemonstrate that this tradeoff is most commonly expressed asa decrease in the age of first reproduction and increased fecundityin the morph with reduced wings. Given these tradeoffs, theevolution of wing dimorphism will depend upon its genetic basis,including correlations with other life history components. Areview of the recent literature suggests that the heritabilityof wing morphology is high, and we suggest that this high heritabilitycould be maintained, in part, by antagonistic pleiotropy. In dimorphic species, the winged morph is generally consideredto be the migrant form. However, there are significant correlations,both within and among species, between the proportion of wingedindividuals, the proportion of winged individuals with functionalflight muscles, and the flight propensity of those individuals.This suggests that the proportion of winged individuals andthe propensity of the winged morph to migrate are intimatelyconnected at both the physiological and population level. Therefore,the study of the evolution of wing dimorphism is important notonly in its own right but also as a model of how migratory propensityevolves in monomorphically winged species.  相似文献   

8.
Many polyphenisms are examples of adaptive phenotypic plasticity where a single genotype produces distinct phenotypes in response to environmental cues. Such alternative phenotypes occur as winged and wingless parthenogenetic females in the pea aphid (Acyrthosiphon pisum). However, the proportion of winged females produced in response to a given environmental cue varies between clonal genotypes. Winged and wingless phenotypes also occur in males of the sexual generation. In contrast to parthenogenetic females, wing production in males is environmentally insensitive and controlled by the sex-linked, biallelic locus, aphicarus (api). Hence, environmental or genetic cues induce development of winged and wingless phenotypes at different stages of the pea aphid life cycle. We have tested whether allelic variation at the api locus explains genetic variation in the propensity to produce winged females. We assayed clones from an F2 cross that were heterozygous or homozygous for alternative api alleles for their propensity to produce winged offspring. We found that clones with different api genotypes differed in their propensity to produce winged offspring. The results indicate genetic linkage of factors controlling the female wing polyphenism and male wing polymorphism. This finding is consistent with the hypothesis that genotype by environment interaction at the api locus explains genetic variation in the environmentally cued wing polyphenism.  相似文献   

9.
Ecological traits that reflect movement potential are often used as proxies for measured dispersal distances. Whether such traits reflect actual dispersal is often untested. Such tests are important because maximum dispersal distances may not be achieved and many dispersal events may be unsuccessful (without reproduction). For insects, many habitat patches harbour ‘resident’ species that are present as larvae (sedentary) and adults (winged and dispersing), and ‘itinerant’ species present only as adults that have dispersed from elsewhere and fail to reproduce. We tested whether itinerancy patterns were temporally consistent, and whether itinerant and resident species differed in wing morphology, a strong correlate of flight capability. Over 3 years and at multiple locations in a 22 km stream length, we sampled larvae and adults of caddisflies in the genus Ecnomus to categorize species as residents or itinerants. Flight capacity was measured using wing size (length and area) and shape parameters (aspect ratio and the second moment of wing area). Three species of Ecnomus were residents and three species were itinerants, and patterns were consistent over 3 years. On average, itinerant species had larger wings, suggesting a greater capacity to fly long distances. Wing shape differed between species, but did not differ systematically between residents and itinerants. Wing morphology was associated with actual but not effective dispersal of some species of Ecnomus. Morphological traits may have weak explanatory power for hypotheses regarding the demographic connectedness of populations, unless accompanied by data demonstrating which dispersers contribute new individuals to populations.  相似文献   

10.
Wing dimorphism has been proposed as a strategy to face trade-offs between flight capability and fecundity. In aphids, individuals with functional wings have slower development and lower fecundity compared with wingless individuals. However, differential maintenance costs between winged and wingless aphids have not been deeply investigated. In the current study, we studied the combined effect of wing dimorphism with the effects of aphid genotypes and of wheat hosts having different levels of chemical defences (hydroxamic acids, Hx) on adult body mass and standard metabolic rates (SMR) of winged and wingless morphs of the grain aphid, Sitobion avenae. We found that wingless aphids had higher body mass than winged aphids and that body mass also increased towards host with high Hx levels. Furthermore, winged aphids showed a plastic SMR in terms of Hx levels, whereas wingless aphids displayed a rigid reaction norm (significant interaction between morph condition and wheat host). These findings suggest that winged aphids have reduced adult size compared to wingless aphids, likely due to costs associated to the development of flight structure in early-life stages. These costs contrast with the absence of detectable metabolic costs related to fuelling and maintenance of the flight apparatus in adults.  相似文献   

11.
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

12.
Among social Hymenoptera, only some ant genera have more than one morphological kind of non-reproductive adults. Individuals that are bigger than ordinary workers can function for defence and/or food storage. In Crematogaster (Orthocrema) smithi from Arizona, a third caste exists in addition to winged queens and workers; it is intermediate in size, weight and morphology, and individuals lay many unfertilized eggs that are mostly eaten by larvae (Heinze et al., 1995, 1999). We studied another three species belonging to the subgenus Orthocrema: Crematogaster pygmaea from Brazil, Crematogaster biroi and Crematogaster schimmeri from Taiwan. Using scanning electron microscopy and ovarian dissections, we show that ‘intermediates’ are a patchwork of queen-like and worker-like traits, just as in C. smithi; importantly the combinations differ across species. ‘Intermediates’ are numerically few in the colonies, and in C. pygmaea they are produced seasonally. Using histology we confirmed the lack of a spermatheca, thus they are not ergatoid queens. Based on the similarity of their mosaic phenotypes with those in other ant lineages, we suggest that Orthocrema ‘intermediates’ are a soldier caste with a specialized trophic function. This soldier caste has been reported in other Orthocrema species from Madagascar, Guinea and Costa Rica, suggesting that it is widespread in this subgenus.  相似文献   

13.
Responding to the actions of the mate and taking somewhat fixed patterns,Grus japonensis, G. vipio, G. antigone, Anthropoides paradisea andBalearica regulorum pairs are finally led to copulation by a sequence of mating behaviours. There are slight differences in pre-copulatory behaviour patterns between the species and the female's ‘wing-spreading’, being the soliciting and key posture for copulation, differs between the genera; The female's wings are spread wide inGrus, fairly wide inAnthropoides, and are almost folded inBalearica. Post-copulatory behaviours, however, have definite species-specific characters. They usually consist of ‘head-down’ (bowing) or ‘warping’, ‘arching’, etc. immediately following the dismounting of the male inGrus. But a pair ofBalearica first keep their heads high, or gaze at each other for a while, and then show remarkable ‘ruffle-bowing’. These characteristic post-copulatory behaviours are obviously correlated with the threat displays, evolved under agonistic situations, typical to each species.  相似文献   

14.
Among the Orthoptera, wing dimorphism, where one morph is long‐winged and flight capable while the other is short‐winged and flight incapable, is common and believed to be maintained in populations due to trade‐offs to flight capability. In males, macropterous individuals call less than micropterous individuals and as a consequence obtain fewer matings. This trade‐off is hypothesized to be mediated by the energetic costs of calling. In this paper we report results for a path analysis examining lipid weight and DLM (dorso longitudinal muscle) condition of male Gryllus firmus. We found that as DLM condition changes from a nonfunctional to a functional state, call duration decreases, and as lipid weight increases, call duration increases. The most important linked path was wing morph → DLM condition → call duration. This model is consistent with the prediction that the trade‐off between wing morph and call duration is mediated via DLM and lipid stores.  相似文献   

15.
The eyes of stalk‐eyed flies (Diopsidae) are positioned at the end of rigid peduncles (‘stalks’) protruding laterally from the head. Eye‐stalk length varies within the family and, in some species, varies between males and females. Larger eye‐stalks in males result from sexual selection for longer stalks, a trait that increases male reproductive success. In the present study, we examined whether an increase in eye‐stalk length results in an adjustment of wing size and shape to deal with the burden of bearing an exaggerated ‘ornament’. We compared wing morphology among ten species of stalk‐eyed flies that differ in eye‐span and the degree of sexual dimorphism. Mass‐specific wing length differed between males and females in seven out of the ten species. Nondimensional wing shape parameters differed between the species (P < 0.001), but mostly did not differ between males and females of the same species. Dimorphism in eye‐span closely correlated with dimorphism in wing length (r = 0.89, P < 0.001) and the correlation remained significant (r = 0.81, P = 0.006) after correcting for phylogenetic relationships. Once corrected for phylogenetic relatedness, the mass‐specific wing length of males (but not females) was weakly correlated with mass‐specific eye‐span (r = 0.66, P = 0.042). We propose that the observed proportional increase in wing length associated with increased eye‐span can facilitate aerial manoeuverability, which would otherwise be handicapped by the elevated moment of inertia imposed by the wider head. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 860–871.  相似文献   

16.
17.
Wing-dimorphic insects are excellent subjects for a study of the evolution of dispersal since the nondispersing brachypterous morph is easily recognized. The purpose of this paper is to develop a framework within which the evolution of wing dimorphism can be understood. A review of the literature indicates that the presence or absence of wings may be controlled by a single locus, two-allele genetic system or a polygenic system. Both types of inheritance can be subsumed within a general threshold model. An increase in the frequency of a brachypterous morph in a population may result from an increased relative fitness of this morph or the emigration of the macropterous type. The abundance of wing-polymorphic species argues for an increased fitness of the brachypterous form. An analysis of the life-history characteristics of 22 species of insects indicates that the brachypterous morph is both more fecund and reproduces earlier that the macropterous morph. Unfortunately, data on males are generally lacking. It is suggested that suppression of wing production results when some hormone, perhaps juvenile hormone, exceeds a threshold value during a critical stage of development. Further, it is known that in the monomorphically winged species Oncopeltus fasciatus both flight and oviposition are regulated by the titer of juvenile hormone. These observations are used to construct a possible pathway for the evolution of wing dimorphism. This suggests that evolution to a dimorphic species requires both an increase in the rate of production of the wing suppressing hormone and a change in the threshold level at which wing and wing-muscle production are suppressed. The stage in this evolutionary sequence that an organism will reach depends on the stability of the habitat.  相似文献   

18.
1. In fragmented landscapes many insect species depend on a regular exchange of individuals between subpopulations to ensure the persistence of the population. Thus, the ability to disperse is of particular relevance. 2. However, in some insect species mobility is not a fixed trait. Hence, knowing the causes of phenotypic plasticity is of great importance when evaluating whether a species is able to survive in fragmented landscapes or not. 3. A multi‐year field study was conducted to identify possible causes of macroptery in the wing‐dimorphic habitat specialist Metrioptera brachyptera L. and to quantify its dispersal capability (% macropters). Therefore, 746 individuals of the species were caught on 135 plots. Additionally, environmental variables that possibly induce the development of macropters (population density and habitat moisture) were recorded. 4. Dispersal capability of M. brachyptera was very low. Less than 3% were long‐winged. The statistical analysis revealed that the proportion of long‐winged M. brachyptera was strongly correlated with high bush‐cricket densities and not with habitat moisture. 5. The low dispersal capability of M. brachyptera leads to the conclusion that individual exchange between isolated populations is limited or even impossible. Habitat specialists, like M. brachyptera, may thus be unable to respond to rapid changes in the availability of suitable habitats by dispersing, and hence may be especially dependent on habitat management activities that promote the long‐term stability of existing habitat patches.  相似文献   

19.
Occurrence patterns are partly shaped by the affinity of species with habitat conditions. For winged organisms, flight‐related attributes are vital for ecological performance. However, due to the different reproductive roles of each sex, we expect divergence in flight energy budget, and consequently different selection responses between sexes. We used tropical frugivorous butterflies as models to investigate coevolution between flight morphology, sex dimorphism and vertical stratification. We studied 94 species of Amazonian fruit‐feeding butterflies sampled in seven sites across 3341 ha. We used wing–thorax ratio as a proxy for flight capacity and hierarchical Bayesian modelling to estimate stratum preference. We detected a strong phylogenetic signal in wing–thorax ratio in both sexes. Stouter fast‐flying species preferred the canopy, whereas more slender slow‐flying species preferred the understorey. However, this relationship was stronger in females than in males, suggesting that female phenotype associates more intimately with habitat conditions. Within species, males were stouter than females and sexual dimorphism was sharper in understorey species. Because trait–habitat relationships were independent from phylogeny, the matching between flight morphology and stratum preference is more likely to reflect adaptive radiation than shared ancestry. This study sheds light on the impact of flight and sexual dimorphism on the evolution and ecological adaptation of flying organisms.  相似文献   

20.
Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease (JD) in animals, has also been linked with Crohn's disease in human beings. Lack of indigenous diagnostics and vaccine hampered control of JD in India. Designing effective control strategies require thorough understanding of the etiological agent at phenotypic and molecular levels. On the basis of cultural phenotypes and IS1311 PCR-REA typing, MAP strains have been genotyped as ‘Cattle type’, ‘Sheep type’ and ‘Bison type’. Information exists on genetic differences and comparative evolution of ‘Cattle type’ and ‘Sheep type’ strains after divergence from M. avium; however, emphasis has been little on ‘Bison type’ strains. Recently, a new ‘Indian Bison type’ genotype has been reported as principal strain infecting different animal species and human beings in India. The study analyzed few genetic markers to have inferences on the molecular evolution of native MAP isolates belonging to ‘Bison type’ genotype. Results pointed towards recent evolution of ‘Bison type’ genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号