首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because of methodological variation in previous studies, age-associated changes in peak limb vascular conductance (VC(peak); a functional index of arterial structure) and its determinants remain poorly defined. The objectives of this study were to describe and compare age-associated changes in peak forearm and calf conductance across a broad age range and to identify physiological characteristics that are predictive of variation in limb-specific VC(peak). Peak conductance (plethysmographic flow/brachial mean arterial pressure) of the forearm (forearm VC(peak)) and calf (calf VC(peak)) after 10 min of arterial occlusion was measured twice in 68 healthy, normally active men aged 20-79 yr. Aerobic capacity (cycle peak oxygen consumption), arterial health (ankle-brachial index, pulse wave velocity), and limb-specific measures of muscle mass (dual-energy X-ray absorptiometry) and isometric strength (grip, plantar flexion) were also assessed. The relative decline in forearm VC(peak) with age (-6.6% per decade; P < 0.001) was greater than the decline in calf VC(peak) (-3.4% per decade; P = 0.004). Limb VC(peak) per kilogram of muscle declined with age in the forearm (-3.8% per decade; P = 0.004) but not in the calf (P = 0.35). Age, Vo(2 peak), and regional muscle mass were significant predictors of peak conductance in both limbs; however, these predictors explained considerably less variance in the calf than in the forearm. These results suggest that healthy aging is associated with a linear decline in limb vasodilator capacity in men, but the magnitude of this effect is reduced in the calf relative to the forearm. This could reflect regional differences in habitual muscle use with aging in normally active men.  相似文献   

2.
Age-related reductions in basal limb blood flow and vascular conductance are associated with the metabolic syndrome, functional impairments, and osteoporosis. We tested the hypothesis that a strength training program would increase basal femoral blood flow in aging adults. Twenty-six sedentary but healthy middle-aged and older subjects were randomly assigned to either a whole body strength training intervention group (52 +/- 2 yr, 3 men, 10 women) who underwent three supervised resistance training sessions per week for 13 wk or a control group (53 +/- 2 yr, 4 men, 9 women) who participated in a supervised stretching program. At baseline, there were no significant differences in blood pressure, cardiac output, basal femoral blood flow (via Doppler ultrasound), vascular conductance, and vascular resistance between the two groups. The strength training group increased maximal strength in all the major muscle groups tested (P < 0.05). Whole body lean body mass increased (P < 0.05) with strength training, but leg fat-free mass did not. Basal femoral blood flow and vascular conductance increased by 55-60% after strength training (both P < 0.05). No such changes were observed in the control group. In both groups, there were no significant changes in brachial blood pressure, plasma endothelin-1 and angiotensin II concentrations, femoral artery wall thickness, cardiac output, and systemic vascular resistance. Our results indicate that short-term strength training increases basal femoral blood flow and vascular conductance in healthy middle-aged and older adults.  相似文献   

3.
Uncertainty exists as to whether a period of passive arterial occlusion (PAO) or ischemic exercise (IE) results in peak lower leg vascular conductance (LVC). This uncertainty is due to the different body positions, active muscle mass, and occlusion times used for PAO or IE. The purpose of this study was to examine whether 10 min of PAO elicits a similar LVC compared with ischemic dorsiflexion (IDF), ischemic plantar flexion (IPF), and ischemic plantar-dorsiflexion (IPDF). Ten subjects (5 women, 27 +/- 9 yr, 68 +/- 3 kg) were studied on 3 days over 1 wk in a semireclined position with the right foot attached to an isokinetic dynamometer. Mean arterial pressure (Finapres) and lower leg blood flow (LBF, venous occlusion plethysmography) were measured at rest and after PAO and IE. PAO was administered randomly on 1 of the 3 days and before IE. IE protocols consisted of maximal isokinetic dorsiflexion and/or plantar flexion at 120 and 60 degrees/s, respectively. In a second experiment, an additional eight subjects (4 women, 29 +/- 12 yr, 77 +/- 12 kg) were studied to examine the effect of isokinetic speed during IDF on peak LBF and LVC. Peak LVC (ml.min(-1).100 ml(-1).mmHg(-1)) was similar among IPF (0.590 +/- 0.16), IPDF (0.532 +/- 0.17), and PAO (0.511 +/- 0.18), and significantly lower after IDF (0.334 +/- 0.15). No differences in peak LBF and LVC were observed after IDF using different isokinetic speeds. We conclude that 10 min of PAO, IPF, and IPDF performed in a similar posture are adequate stimuli to elicit peak LVC.  相似文献   

4.
Previously, a strong relationship has been found between whole body maximal aerobic power (VO(2 max)) and peak vascular conductance in the calf muscle (J. L. Reading, J. M. Goodman, M. J. Plyley, J. S. Floras, P. P. Liu, P. R. McLaughlin, and R. J. Shephard. J. Appl. Physiol. 74: 567-573, 1993; P. G. Snell, W. H. Martin, J. C. Buckley, and C. G. Blomqvist. J. Appl. Physiol. 62: 606-610, 1987), suggesting a matching between maximal exercise capacity and peripheral vasodilatory reserve across a broad range of aerobic power. In contrast, long-term training could alter this relationship because of the unique demands for muscle blood flow and cardiac output imposed by different types of training. In particular, the high local blood flows but relatively low cardiac output demand imposed by the type of resistance training used by bodybuilders may cause a relatively greater development in peripheral vascular reserve than in aerobic power. To examine this possibility, we studied the relationship between treadmill VO(2 max) and vascular conductance in the calf by using strain-gauge plethysmography after maximal ischemic plantar flexion exercise in 8 healthy sedentary subjects (HS) and 28 athletes. The athletes were further divided into three groups: 10 elite middle-distance runners (ER), 11 power athletes (PA), and 7 bodybuilders (BB). We found that both BB and ER deviate from the previously demonstrated relationship between VO(2 max) and vascular conductance. Specifically, for a given vascular conductance, BB had a lower VO(2 max), whereas ER had a higher VO(2 max) than did HS and PA. We conclude that the relationship between peak vascular conductance and aerobic power is altered in BB and ER because of training-specific effects on central vs. peripheral cardiovascular adaptation to local skeletal muscle metabolic demand.  相似文献   

5.
We tested the hypothesis that dynamic exercise resets the operating point and attenuates the spontaneous gain of the arterial baroreflex regulation of mesenteric and hindlimb vascular conductance in hypertensive rats. Eleven adult male spontaneously hypertensive rats were chronically instrumented with left carotid arterial catheters and Doppler ultrasonic flow probes around the superior mesenteric and left common iliac arteries. After the rats recovered, arterial baroreflex function was examined by recording reflex changes in conductance in response to spontaneous changes in mean arterial pressure before exercise and during steady-state treadmill running at 6 and 18 m/min. Dynamic exercise reduced the spontaneous baroreflex gain of mesenteric conductance (by 51 and 36%) and maximum mesenteric conductance (by 24 and 32%) at 6 and 18 m/min, respectively. In sharp contrast, dynamic exercise increased the spontaneous maximum iliac conductance (by 32 and 47%) without changing the spontaneous gain. Sinoaortic denervation eliminated the relationship between mean arterial pressure and conductance by reducing the mesenteric (92%) and iliac (68%) vascular conductance gain. These results demonstrate that dynamic exercise has differential effects on the regulation of mesenteric and iliac vascular conductance in hypertensive rats.  相似文献   

6.
The purpose of the study was to examine the effect of 1) active (loadless pedaling), 2) passive (assisted pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), cutaneous vascular conductance (CVC), and sweat rate during recovery after 15 min of dynamic exercise in women. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, CVC, and sweating during exercise recovery. Ten female subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 20 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (Tsk), esophageal temperature (Tes), skin blood flow, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, 15, and 20 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active recovery mode, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining MAP. Sweat rate was different among all modes after 12 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the inactive mode (P < 0.05). No differences in either Tes or Tsk were observed among conditions. The results indicate that CVC can be modulated by central command and possibly cardiopulmonary baroreceptors in women. However, differences in sweat rate may be influenced by factors such as central command, mechanoreceptor stimulation, or cardiopulmonary baroreceptors.  相似文献   

7.

Background

Recently, it was reported in healthy young subjects that fructose containing drinks increased blood pressure acutely, without any apparent change in total vascular conductance (TVC). However, because it is well known that the splanchnic vasculature is dilated by oral fructose ingestion, it is assumed to be the concomitant vasoconstriction in other peripheral region(s) that is responsible for this finding. Thus, the purpose of this study was to determine the acute response of regional VC to oral fructose ingestion in young healthy humans.

Results

In 12 healthy young subjects, mean arterial blood pressure (MAP), heart rate, cardiac output, and blood flow (BF) in the superior mesenteric (SMA), brachial (BA), and popliteal (PA) arteries, in addition to forearm skin BF, were measured continuously for 2 h after ingestion of 400 ml fructose solution (containing 50 g fructose). Regional VC was calculated as BF/MAP. MAP increased for 120 min after fructose ingestion without any change in TVC. While VC in the SMA was elevated after ingestion, VC in BA and PA and forearm skin decreased.

Conclusions

While TVC was apparently unchanged during the 2 h after fructose ingestion, there were coincident changes in regional VCs in the peripheral circulation, but no net change in TVC.  相似文献   

8.
The purpose of this study was to examine hemodynamic responses to graded muscle reflex engagement in human subjects. We studied seven healthy human volunteers [24 +/- 2 (SE) yr old; 4 men, 3 women] performing rhythmic handgrip exercise [40% maximal voluntary contraction (MVC)] during ambient and positive pressure exercise (+10 to +50 mmHg in 10-mmHg increments every minute). Muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), and mean blood velocity were recorded. Plasma lactate, hydrogen ion concentration, and oxyhemoglobin saturation were measured from venous blood. Ischemic exercise resulted in a greater rise in both MSNA and MAP vs. nonischemic exercise. These heightened autonomic responses were noted at +40 and +50 mmHg. Each level of positive pressure was associated with an immediate fall in flow velocity and forearm perfusion pressure. However, during each minute, perfusion pressure increased progressively. For positive pressure of +10 to +40 mmHg, this was associated with restoration of flow velocity. However, at +50 mmHg, flow was not restored. This inability to restore flow was seen at a time when the muscle reflex was clearly engaged (increased MSNA). We believe that these findings are consistent with the hypothesis that before the muscle reflex is clearly engaged, flow to muscle is enhanced by a process that raises perfusion pressure. Once the muscle reflex is clearly engaged and MSNA is augmented, flow to muscle is no longer restored by a similar rise in perfusion pressure, suggesting that active vasoconstriction within muscle is occurring at +50 mmHg.  相似文献   

9.
Reflex vasodilation is attenuated in aged skin during hyperthermia. We used laser-Doppler imaging (LDI) to test the hypothesis that the magnitude of conductance and the spatial distribution of vasodilation are altered with aging. LDI of forearm skin was compared in 12 young (19- to 29-yr-old) and 12 older (64- to 75-yr-old) men during supine passive heating. Additionally, iontophoresis of bretylium tosylate was performed in a subset of subjects to explore the involvement of sympathetic vasoconstriction in limiting skin blood flow. Passive heating with water-perfused suits clamped mean skin temperature at 41.0 +/- 0.5 degrees C, causing a ramp increase in esophageal temperature (T(es)) to 相似文献   

10.
Maximal vascular leg conductance in trained and untrained men   总被引:4,自引:0,他引:4  
Lower leg blood flow and vascular conductance were studied and related to maximal oxygen uptake in 15 sedentary men (28.5 +/- 1.2 yr, mean +/- SE) and 11 endurance-trained men (30.5 +/- 2.0 yr). Blood flows were obtained at rest and during reactive hyperemia produced by ischemic exercise to fatigue. Vascular conductance was computed from blood flow measured by venous occlusion plethysmography, and mean arterial blood pressure was determined by auscultation of the brachial artery. Resting blood flow and mean arterial pressure were similar in both groups (combined mean, 3.0 ml X min-1 X 100 ml-1 and 88.2 mmHg). After ischemic exercise, blood flows were 29- and 19-fold higher (P less than 0.001) than rest in trained (83.3 +/- 3.8 ml X min-1 X 100 ml-1) and sedentary subjects (61.5 +/- 2.3 ml X min-1 X 100 ml-1), respectively. Blood pressure and heart rate were only slightly elevated in both groups. Maximal vascular conductance was significantly higher (P less than 0.001) in the trained compared with the sedentary subjects. The correlation coefficients for maximal oxygen uptake vs. vascular conductance were 0.81 (trained) and 0.45 (sedentary). These data suggest that physical training increases the capacity for vasodilation in active limbs and also enables the trained individual to utilize a larger fraction of maximal vascular conductance than the sedentary subject.  相似文献   

11.
We sought to test the hypothesis that the carotid baroreflex (CBR) alters mean leg blood flow (LBF) and leg vascular conductance (LVC) at rest and during exercise. In seven men and one woman, 25 +/- 2 (SE) yr of age, CBR control of LBF and LVC was determined at rest and during steady-state one-legged knee extension exercise at approximately 65% peak O(2) uptake. The application of 5-s pulses of +40 Torr neck pressure and -60 Torr neck suction significantly altered mean arterial pressure (MAP) and LVC both at rest and during exercise. CBR-mediated changes in MAP were similar between rest and exercise (P > 0.05). However, CBR-mediated decreases in LVC (%change) to neck pressure were attenuated in the exercising leg (16.4 +/- 1.6%) compared with rest (33 +/- 2.1%) and the nonexercising leg (23.7 +/- 1.9%) (P < 0.01). These data suggest CBR control of blood pressure is partially mediated by changes in leg vascular tone both at rest and during exercise. Furthermore, despite alterations in CBR-induced changes in LVC during exercise, CBR control of blood pressure was well maintained.  相似文献   

12.
The purpose of the study was to examine the effect of 1) passive (assisted pedaling), 2) active (loadless pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), skin blood flow (SkBF), and sweating during recovery after 15 min of dynamic exercise. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, SkBF, and sweating during exercise recovery. Six male subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 15 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (T(sk)), esophageal temperature (T(es)), SkBF, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, and 15 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active and passive recovery modes, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining CO, SV, MAP, CVC, and sweat rate above inactive recovery. Sweat rate was different among all modes after 8 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the passive and inactive modes (P < 0.05). No differences in either T(es) or T(sk) were observed among conditions. Given that MAP was higher during passive and active recovery modes than during inactive recovery suggests differences in CVC may be due to differences in baroreceptor unloading and not factors attributed to central command. However, differences in sweat rate may be influenced by factors such as central command and mechanoreceptor stimulation.  相似文献   

13.
Elevated body core temperature stimulates cutaneous vasodilation, which can be modified by nonthermal factors. To test whether hypohydration affects forearm vascular conductance discretely from relative alterations in heart rate (HR), eight trained cyclists exercised progressively for 20 min each at 60, 120, and 180 W [approximately 22, 37, and 55% of maximal cycling O2 consumption (VO2peak), respectively] in a warm humid environment (dry bulb temperature 30 degrees C; wet bulb temperature 24 degrees C). Esophageal temperature and forearm blood flow were measured every 30 s, and mean arterial pressure and HR were measured at rest and during each exercise intensity (minutes 15, 35, and 55). In the hypovolemic (HP) compared with the euvolemic (EU) state, blood volume was contracted by 24-h fluid restriction an average of 510 ml, and this difference was sustained throughout exercise. The esophageal temperature and HR responses were similar between EU and HP states at 60 and 120 W but were significantly (P < 0.05) higher in HP by the end of 180 W. In contrast, the forearm blood flow response was significantly (P < 0.05) depressed during exercise at 120 and 180 W in HP, whereas mean arterial pressure remained similar between conditions. When body core temperature is elevated in a hypohydrated state, forearm vascular conductance is reduced at exercise intensities of approximately 37% VO2peak, which is independent of relative changes in HR. These findings are consistent with the notion that during exercise an attenuated cutaneous vasodilation is elicited by alterations in regionalized sympathetic outflow, which is unaccompanied by activation of cardiac pacemaker cells.  相似文献   

14.
15.
16.
The aim of this study was to investigate the relationship between maximal anaerobic power (P max) and corresponding optimal velocity (V opt) and habitual physical activity (PA) on the one hand and with maximal oxygen consumption (O2max) on the other hand, in elderly women. Twenty-nine community dwelling, healthy women aged 66–82 years participated in the study. PA was evaluated using the Questionnaire d'Activite Physique Saint-Etienne (QAPSE) and expressed using two QAPSE activity indices: mean habitual daily energy expenditure (MHDEE) and daily energy expenditure corresponding to leisure time sports activities (sports activity). The subjects' P max and V opt were measured while they cycled on a friction-loaded non-isokinetic cycle ergometer. P max was expressed relative to body mass [P max/kg(W · kg−1)], and relative to the mass of two quadriceps muscles [P max /Quadr(W·kgQuadr −1)]. A negative relationship between P max/kg (Spearman's r = −0.56; P < 0.01), P max/Quadr (r = −0.53; P < 0.01) and V opt (r = −0.45; P < 0.05) and age was found. P max/kg was positively associated with MHDEE (r = 0.51; P < 0.01) and sports activity (r = 0.58; P < 0.01), as were P max/Quadr and V opt (r = 0.55; P < 0.01 and r = 0.54; P < 0.01, respectively). P max/kg, P max/Quadr and V opt correlated positively with O2max. The positive relationship between ergometer measurements and PA indices was similar to that between O2max and PA. P max/kg was, moreover, closely related to V opt (r = 0.77; P < 0.001). When a multiple stepwise regression analysis was used to select the variables influencing ergometer measurements, MHDEE contributed significantly to P max/kg variance, whereas sports activity contributed to P max/Quadr and V opt variances. In conclusion, the data from this cross-sectional study suggest that in healthy elderly women habitual PA, and especially leisure time PA, alleviates the decline of the P max of the quadriceps muscles. Accepted: 30 January 1997  相似文献   

17.

Background

Post-exercise hypotension (PEH) following prolonged dynamic exercise arises from increased total vascular conductance (TVC) via skeletal muscle vasodilation. However, arterial vasodilation of skeletal musculatures does not entirely account for the rise in TVC. The aim of the present study was to determine the contribution of vascular conductance (VC) of the legs, arms, kidneys and viscera to TVC during PEH.

Methods

Eight subjects performed a single period of cycling at 60% of heart rate (HR) reserve for 60 minutes. Blood flow in the right renal, superior mesenteric, right brachial and right femoral arteries was measured by Doppler ultrasonography in a supine position before exercise and during recovery. HR and mean arterial pressure (MAP) were measured continuously. MAP decreased significantly from approximately 25 minutes after exercise cessation compared with pre-exercise baseline. TVC significantly increased (approximately 23%; P <0.05) after exercise compared with baseline, which resulted from increased VC in the leg (approximately 33%) and arm (approximately 20%), but not in the abdomen.

Conclusion

PEH was not induced by decreased cardiac output, but by increased TVC, two-thirds of the rise in which can be attributed to increased VC in active and inactive limbs.  相似文献   

18.
Strength of pulmonary vascular response to regional alveolar hypoxia.   总被引:1,自引:0,他引:1  
Regional alveolar hypoxia in the lung induces regional pulmonary vasoconstriction which diverts blood flow from the hypoxic area. However, the predominant determinant of the distribution of perfusion in the normal erect lung is gravity so that more perfusion occurs at the base than at the apex. To determine the strength of the regional alveolar hypoxic response in diverting flow with or against the gravity gradient a divided tracheal cannula was placed in anesthetized dogs and unilateral alveolar hypoxia created by venilating one lung with nitrogen while ventilating the other lung with oxygen to preserve normal systemic oxygentation. Scintigrams of the distribution of perfusion obtained with intravenous 13-N and the MGH positron camera revealed a 34 and 32 per cent decrease in perfusion to the hypoxic lung in the supine and erect positions and a 26 per cent decrease in the decubitus position with the hypoxic lung dependent (P equal to 0.94 from supine shift), indicating nearly equal vasoconstriction with shift of perfusion away from the hypoxic lung in all positions. Analysis of regional shifts in perfusion revealed an equal vasoconstrictor response from apex to base in the supine position but a greater response in the lower lung zones in the erect position where perfusion was also greatest.  相似文献   

19.
We investigated the effects of cold temperatures on microvascular protein permeability in the isolated constant-flow perfused cat hindlimb. The perfusates were 20% cat plasma-80% albumin-electrolyte solution (low-viscosity perfusate, approximately 1 cP) or whole blood (high-viscosity perfusate, approximately 4 cP). The time at low temperature (less than 10 degrees C) was less than 3 h (short term) or greater than 5 h (long term). Decreases in the solvent drag reflection coefficient (sigma f) indicated increases in permeability. The sigma f's were determined with the integral-mass balance method from measurement of changes in protein concentration and hematocrit induced by fluid filtration into the tissues. Short-term cold exposure did not increase permeability with either a low- or a high-viscosity perfusate, whereas long-term exposure with limb temperatures of approximately 5 degrees C significantly increased permeability when the perfusate was whole blood. In addition, we verified our previous prediction that flow had to be reduced to 6-8 ml.min-1.100 g-1 to avoid the hydrostatic edema caused by short-term perfusion with whole blood at approximately 5 degrees C. Also, we found that at approximately 3 degrees C histamine's permeability-increasing effect was totally abolished, whereas at approximately 20 degrees C this effect was partially inhibited. Hence, constant-flow perfusion at low temperature with whole blood can cause edema by a pressure-dependent mechanism, whereas long-term perfusion with this perfusate at low temperatures can cause a permeability increase that further compounds edema formation. Histamine is not responsible for this permeability increase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号