首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic locus encoding cytochrome P450 51 (CYP51; P450(14DM)) in Mycobacterium smegmatis is described here together with confirmation of activity in lanosterol 14 alpha-demethylation. The protein bound azole antifungals with high affinity and the rank order based on affinity matched the ranked order for microbiological sensitivity of the organism, thus supporting a possible role for CYP51 as a target in the antimycobacterial activity of these compounds. Non-saponifiable lipids were extracted from the bacteria grown on minimal medium. Unlike a previous report using growth on complex medium, no cholesterol was detected in two strains of M. smegmatis, but a novel lipid was detected. The genetic locus of CYP51 is discussed in relation to function; it is conserved as part of a putative operon in M. smegmatis, Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium bovis and consists of six open-reading frames including two CYPs and a ferredoxin under a putative Tet-R regulated promoter.  相似文献   

2.
A universal step in the biosynthesis of membrane sterols and steroid hormones is the oxidative removal of the 14alpha-methyl group from sterol precursors by sterol 14alpha-demethylase (CYP51). This enzyme is a primary target in treatment of fungal infections in organisms ranging from humans to plants, and development of more potent and selective CYP51 inhibitors is an important biological objective. Our continuing interest in structural aspects of substrate and inhibitor recognition in CYP51 led us to determine (to a resolution of 1.95A) the structure of CYP51 from Mycobacterium tuberculosis (CYP51(Mt)) co-crystallized with 4,4'-dihydroxybenzophenone (DHBP), a small organic molecule previously identified among top type I binding hits in a library screened against CYP51(Mt). The newly determined CYP51(Mt)-DHBP structure is the most complete to date and is an improved template for three-dimensional modeling of CYP51 enzymes from fungal and prokaryotic pathogens. The structure demonstrates the induction of conformational fit of the flexible protein regions and the interactions of conserved Phe-89 essential for both fungal drug resistance and catalytic function, which were obscure in the previously characterized CYP51(Mt)-estriol complex. DHBP represents a benzophenone scaffold binding in the CYP51 active site via a type I mechanism, suggesting (i) a possible new class of CYP51 inhibitors targeting flexible regions, (ii) an alternative catalytic function for bacterial CYP51 enzymes, and (iii) a potential for hydroxybenzophenones, widely distributed in the environment, to interfere with sterol biosynthesis. Finally, we show the inhibition of M. tuberculosis growth by DHBP in a mouse macrophage model.  相似文献   

3.
4.
5.
Leishmaniasis is a major health problem that affects populations of ~90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14α-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14α-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V(max) of ~10 and 8 min(-1), respectively), it is also found to 14α-demethylate C4-dimethylated lanosterol (V(max) = 0.9 min(-1)) and C4-desmethylated 14α-methylzymosterol (V(max) = 1.9 min(-1)). Binding parameters with six sterols were tested, with K(d) values ranging from 0.25 to 1.4 μM. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14α-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.  相似文献   

6.
7.
Upon sequence alignment of CYP51 sterol 14alpha-demethylase from animals, plants, fungi, and bacteria, arginine corresponding to Arg-448 of CYP51 in Mycobacterium tuberculosis (MT) is conserved near the C terminus of all family members. In MTCYP51 Arg-448 forms a salt bridge with Asp-287, connecting beta-strand 3-2 with helix J. Deletion of the three C-terminal residues of MTCYP51 has little effect on expression of P450 in Escherichia coli. However, truncation of the fourth amino acid (Arg-448) completely abolishes P450 expression. We have investigated whether Arg-448 has other structural or functional roles in addition to folding and whether its conservation reflects conservation of a common folding pathway in the CYP51 family. Characterization of wild type protein and three mutants, R448K, R448I, and R448A, including examination of catalytic activity, secondary and tertiary structure analysis by circular dichroism and tryptophan fluorescence, and studies of both equilibrium and temporal MTCYP51 unfolding behavior, shows that Arg-448 does not play any role in P450 function or maintenance of the native structure. C-terminal truncation of Candida albicans and human CYP51 orthologs reveals that, despite conservation in sequence, the requirement for arginine at the homologous C-terminal position in folding in E. coli is not conserved. Thus, despite similar spatial folds, functionally related but evolutionarily distinct P450s can follow different folding pathways.  相似文献   

8.
Nicotiana tabacum protoplasts have been transformed by Agrobacterium tumefaciens containing a T-DNA in which the gene CYP51A1 encoding lanosterol-14-demethylase (LAN14DM) from Saccharomyces cerevisiae is under the control of a cauliflower mosaic virus (CaMV) 35S promoter. Two transformants strongly expressed the LAN14DM as shown by Northern and Western experiments. These transgenic calli were killed by LAB 170250F (LAB) (a phytotoxic fungicide inhibiting both plant obtusifoliol-14-demethylase (OBT14DM) and LAN14DM) but were resistant to γ-ketotriazole (γ-kt), a herbicide which has been shown to inhibit OBT14DM but not LAN14DM at a concentration that was lethal to control calli. However, these transgenic calli were killed by mixtures of γ-kt plus fungicide inhibitors of LAN14DM such as ketoconazole, itraconazole or flusilazole which alone were not effective. Further analysis of the transgenic calli grown in the presence of γ-kt showed that their Δ5-sterol content was close to that of untreated control calli obtained from protoplasts transformed with control plasmid; this is in agreement with evidence that the LAN14DM expressed from the transgene could bypass the blocked OBT14DM by using the plant substrate obtusifoliol. In contrast, control calli when treated with γ-kt, displayed a sterol content strongly enriched in 14α-methyl sterols and depressed in physiological Δ5-sterols. When the transgenic calli were cultured in mixtures of γ-kt and LAN14DM inhibitors sterol compositions enriched in 14α-methyl sterols were obtained, reflecting a strong inhibition of both ‘endogenous’ OBT14DM and ‘exogenous’ LAN14DM. Taken together these results show that in tobacco calli transformed with CYP51A1, resistance to a triazole herbicide arises from expression of a functional LAN14DM enzyme; its activity in transgenic tissues creates a bypass of the sterol biosynthetic pathway at the 14-demethylase level when this latter is blocked by an OBT14DM herbicide inhibitor.  相似文献   

9.
10.
11.
A potential drug target for treatment of Chagas disease, sterol 14alpha-demethylase from Trypanosoma cruzi (TCCYP51), was found to be catalytically closely related to animal/fungi-like CYP51. Contrary to the ortholog from Trypanosoma brucei (TB), which like plant CYP51 requires C4-monomethylated sterol substrates, TCCYP51 prefers C4-dimethylsterols. Sixty-six CYP51 sequences are known from bacteria to human, their sequence homology ranging from approximately 25% between phyla to approximately 80% within a phylum. TC versus TB is the first example of two organisms from the same phylum, in which CYP51s (83% amino acid identity) have such profound differences in substrate specificity. Substitution of animal/fungi-like Ile105 in the B' helix to Phe, the residue found in this position in all plant and the other six CYP51 sequences from Trypanosomatidae, dramatically alters substrate preferences of TCCYP51, converting it into a more plant-like enzyme. The rates of 14alpha-demethylation of obtusifoliol and its 24-demethyl analog 4alpha-,4alpha-dimethylcholesta-8,24-dien-3beta-ol(norlanosterol) increase 60- and 150-fold, respectively. Turnover of the three 4,4-dimethylated sterol substrates is reduced approximately 3.5-fold. These catalytic properties correlate with the sterol binding parameters, suggesting that Phe in this position provides necessary interactions with C4-monomethylated substrates, which Ile cannot. The CYP51 substrate preferences imply differences in the post-squalene portion of sterol biosynthesis in TC and TB. The phyla-specific residue can be used to predict preferred substrates of new CYP51 sequences and subsequently for the development of new artificial substrate analogs, which might serve as highly specific inhibitors able to kill human parasites.  相似文献   

12.
Obtusifoliol 14alpha-demethylase is a plant orthologue of sterol 14alpha-demethylase (CYP51) essential in sterol biosynthesis. We have prepared CYP51 antisense Arabidopsis in order to shed light on the sterol and steroid hormone biosynthesis in plants. Arabidopsis putative CYP51 cDNA (AtCYP51) was obtained from Arabidopsis expressed sequence tag (EST) library and its function was examined in a yeast lanosterol 14alpha-demethylase (Erg11) deficient mutant. A recombinant AtCYP51 protein fused with a yeast Erg11 signal-anchor peptide was able to complement the erg11 mutation, which confirmed AtCYP51 to be a functional sterol 14alpha-demethylase. AtCYP51 was then used to generate transgenic Arabidopsis by transforming with pBI vector harboring AtCYP51 in the antisense direction under CaMV35S promoter. The resulting transgenic plants were decreased in accumulation of AtCYP51 mRNA and increased in the amount of endogenous obtusifoliol. They showed a semidwarf phenotype in the early growth stage and a longer life span than control plants. This newly found phenotype is different from previously characterized brassinosteroid (BR)-deficient campesterol biosynthesis mutants.  相似文献   

13.
We prepared a soluble monomeric form of bovine cytochrome P450 lanosterol 14α-demethylase (CYP51), which in mammals is a ubiquitously expressed membrane protein of the endoplasmic reticulum. We constructed two variants of bovine CYP51 (bCYP51) with different truncations and modifications in their N-terminal membrane-spanning domains. Both of these were expressed in Escherichia coli at levels of 500 nmol/l. The protein variants were purified and tested for the solubility in the absence of detergent. Variant bCYP51-d1 exhibited ∼10-fold better solubility over variant bCYT51-d2. The bCYP51-d1 eluted as a single peak in size-exclusion chromatography, corresponding to its monomeric form. The activity of bCYP51-d1 is similar to that of recombinant human CYP51 with a non-truncated membrane-spanning region. High solubility and low tendency to non-specific oligomer formation make bCYP51-d1 a promising candidate for successful crystallization, which may finally allow the structural determination of this important mammalian enzyme.  相似文献   

14.
CYP51s form the only family of P450 proteins conserved in evolution from prokaryotes to fungi, plants and mammals. In all eukaryotes, CYP51s catalyse 14alpha-demethylation of sterols. We have recently isolated two CYP51 cDNAs from sorghum [Bak, S., Kahn, R.A., Olsen, C. E. & Halkier, B.A. (1997) Plant J. 11, 191-201] and wheat [Cabello-Hurtado, F., Zimmerlin, A., Rahier, A., Taton, M., DeRose, R., Nedelkina, S., Batard, Y., Durst, F., Pallett, K.E. & Werck-Reichhart, D. (1997) Biophys. Biochem. Res. Commun. 230, 381-385]. Wheat and sorghum CYP51 proteins show a high identity (92%) compared with their identity with their fungal and mammalian orthologues (32-39%). Data obtained with plant microsomes have previously suggested that differences in primary sequences reflect differences in sterol pathways and CYP51 substrate specificities between animals, fungi and plants. To investigate more thoroughly the properties of the plant CYP51, the wheat enzyme was expressed in yeast strains overexpressing different P450 reductases as a fusion with either yeast or plant (sorghum) membrane targeting sequences. The endogenous sterol demethylase gene (ERG11) was then disrupted. A sorghum-wheat fusion protein expressed with the Arabidopsis thaliana reductase ATR1 showed the highest level of expression and activity. The expression induced a marked proliferation of microsomal membranes so as to obtain 70 nmol P450.(L culture)-1, with CYP51 representing 1.5% of microsomal protein. Without disruption of the ERG11 gene, the expression level was fivefold reduced. CYP51 from wheat complemented the ERG11 disruption, as the modified yeasts did not need supplementation with exogenous ergosterol and grew normally under aerobic conditions. The fusion plant enzyme catalysed 14alpha-demethylation of obtusifoliol very actively (Km,app = 197 microm, kcat = 1.2 min-1) and with very strict substrate specificity. No metabolism of lanosterol and eburicol, the substrates of the fungal and mammalian CYP51s, nor metabolism of herbicides and fatty acids was detected in the recombinant yeast microsomes. Surprisingly lanosterol (Ks = 2.2 microM) and eburicol (Ks = 2.5 microm) were found to bind the active site of the plant enzyme with affinities higher than that for obtusifoliol (Ks = 289 microM), giving typical type-I spectra. The amplitudes of these spectra, however, suggested that lanosterol and eburicol were less favourably positioned to be metabolized than obtusifoliol. The recombinant enzyme was also used to test the relative binding constants of two azole compounds, LAB170250F and gamma-ketotriazole, which were previously reported to be potent inhibitors of the plant enzyme. The Ks of plant CYP51 for LAB170250F (0.29 microM) and gamma-ketotriazole (0.40 microM) calculated from the type-II sp2 nitrogen-binding spectra were in better agreement with their reported effects as plant CYP51 inhibitors than values previously determined with plant microsomes. This optimized expression system thus provides an excellent tool for detailed enzymological and mechanistic studies, and for improving the selectivity of inhibitory molecules.  相似文献   

15.
Sterol demethylation inhibitor (DMI) fungicides are widely used to control fungi pathogenic to humans and plants. Resistance to DMIs is mediated either through alterations in the structure of the target enzyme CYP51 (encoding 14alpha-demethylase), through increased expression of the CYP51 gene, or through increased expression of efflux pumps. We found that CYP51 expression in DMI-resistant (DMI(R)) isolates of the cherry leaf spot pathogen Blumeriella jaapii was increased 5- to 12-fold compared to that in DMI-sensitive (DMI(S)) isolates. Analysis of sequences upstream of CYP51 in 59 DMI(R) isolates revealed that various forms of a truncated non-long terminal direct repeat long interspersed nuclear element retrotransposon were present in all instances. Similar inserts upstream of CYP51 were not present in any of 22 DMI(S) isolates examined.  相似文献   

16.
Activation of two mitogen-activated protein kinases (MAPKs), wound-induced protein kinase (WIPK) and salicylic acid-induced protein kinase (SIPK), is one of the earliest responses that occur in tobacco plants that have been wounded, treated with pathogen-derived elicitors or challenged with avirulent pathogens. We isolated cDNAs for these MAPKs ( NbWIPK and NbSIPK) from Nicotiana benthamiana. The function of NbWIPK and NbSIPK in mediating the hypersensitive response (HR) triggered by infiltration with INF1 protein (the major elicitin secreted by Phytophthora infestans), and the defense response to an incompatible bacterial pathogen ( Pseudomonas cichorii), was investigated by employing virus-induced gene silencing (VIGS) to inhibit expression of the WIPK and SIPK genes in N. benthamiana. Silencing of WIPK or SIPK, or both genes simultaneously, resulted in reduced resistance to P. cichorii, but no change was observed in the timing or extent of HR development after treatment with INF1.Communicated by R. G. Herrmann  相似文献   

17.
Lewis RS  Bowen SW  Keogh MR  Dewey RE 《Phytochemistry》2010,71(17-18):1988-1998
In most tobacco (Nicotiana tabacum L.) plants, nornicotine is a relatively minor alkaloid, comprising about 2-5% of the total pyridine alkaloid pool in the mature leaf. Changes in gene expression at an unstable locus, however, can give rise to plants that produce high levels of nornicotine, specifically during leaf senescence and curing. Minimizing the nornicotine content in tobacco is highly desirable, because this compound serves as the direct precursor in the synthesis of N'-nitrosonornicotine, a potent carcinogen in laboratory animals. Nornicotine is likely produced almost entirely via the N-demethylation of nicotine, in a process called nicotine conversion that is catalyzed by the enzyme nicotine N-demethylase (NND). Previous studies have identified CYP82E4 as the specific NND gene responsible for the unstable conversion phenomenon, and CYP82E5v2 as a putative minor NND gene. Here, by discovery and characterization of CYP82E10, a tobacco NND gene, is reported. PCR amplification studies showed that CYP82E10 originated from the N. sylvestris ancestral parent of modern tobacco. Using a chemical mutagenesis strategy, knockout mutations were induced and identified in all three tobacco NND genes. By generating a series of mutant NND genotypes, the relative contribution of each NND gene toward the nornicotine content of the plant was assessed. Plants possessing knockout mutations in all three genes displayed nornicotine phenotypes that were much lower (~0.5% of total alkaloid content) than that found in conventional tobacco cultivars. The introduction of these mutations into commercial breeding lines promises to be a viable strategy for reducing the levels of one of the best characterized animal carcinogens found in tobacco products.  相似文献   

18.
H S Moon  J S Nicholson  R S Lewis 《Génome》2008,51(8):547-559
The recent development of microsatellite markers for tobacco, Nicotiana tabacum L., may be valuable for genetic studies within the genus Nicotiana. The first objective was to evaluate transferability of 100 N. tabacum microsatellite primer combinations to 5 diploid species closely related to tobacco. The number of primer combinations that amplified scorable bands in these species ranged from 42 to 56. Additional objectives were to assess levels of genetic diversity amongst available accessions of diploid relatives closely related to tobacco (species of sections Sylvestres and Tomentosae), and to evaluate the efficacy of microsatellite markers for establishing species relationships in comparison with existing phylogenetic reconstructions. A subset of 46 primer combinations was therefore used to genotype 3 synthetic tobaccos and an expanded collection of 51 Nicotiana accessions representing 15 species. The average genetic similarity for 7 diverse accessions of tobacco was greater than the average similarity for N. otophora accessions, but lower than the average genetic similarities for N. sylvestris, N. tomentosa, N. kawakamii, and N. tomentosiformis accessions. A microsatellite-based phylogenetic tree was largely congruent with taxonomic representations based on morphological, cytological, and molecular observations. Results will be useful for selection of parents for creation of diploid mapping populations and for germplasm introgression activities.  相似文献   

19.
Sterol 14-demethylase P450 (CYP51) is an essential enzyme for sterol biosynthesis by eukaryotes. We have cloned rat and human CYP51 cDNAs [Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Horiuchi, T., and Yoshida, Y. (1996) J. Biochem. 119, 926-933]. The cloned rat CYP51 cDNA was expressed in Escherichia coli with modification of the N-terminal amino acid sequence, and the expressed protein (CYP51m) was purified to gel-electrophoretic homogenity. The spectrophotometrically determined specific content of CYP51m was 16 nmol/mg protein and the apparent molecular weight was estimated to be 53,000 on SDS-PAGE. Soret peaks of the oxidized and reduced CO-complex of CYP51m were observed at 417 and 447 nm, respectively. The purified CYP51m catalyzed the 14-demethylation of lanosterol and 24,25-dihydrolanosterol upon reconstitution with NADPH-P450 reductase purified from rat liver microsomes. The apparent K(m) and V(max) values for lanosterol were 10.5 microM and 13.9 nmol/min/nmol P450, respectively, and those for 24, 25-dihydrolanosterol were 20.0 microM and 20.0 nmol/min/nmol P450, respectively. The lanosterol demethylase activity of the reconstituted system of CYP51m was inhibited by ketoconazole, itraconazole and fluconazole with apparent IC(50) values of 0.2, 0.7, and 160 microM, respectively.  相似文献   

20.
Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号