首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
二酰基甘油酰基转移酶(DGAT)是甘油三酯(TG)合成的关键酶,催化TG合成的最后一步。DGAT有两种亚型:DGAT1和DGAT2。DGAT1缺陷的小鼠对胰岛素和瘦素的敏感性增加且可以抵抗饮食诱导的肥胖;DGAT2功能下调可明显降低肥胖小鼠肝脏TG含量,改善脂肪肝的形成。DGAT抑制剂可改善动物模型的高脂血症和脂肪肝。因此,DGAT有可能成为防治肥胖、糖尿病等代谢性疾病的新的药物靶标。该文详细阐述了DGAT的生理功能研究及其抑制剂的研究进展。  相似文献   

2.
Insulin resistance and type 2 diabetes are frequently accompanied by lipid accumulation in skeletal muscle. However, it is unknown whether primary lipid deposition in skeletal muscle is sufficient to cause insulin resistance or whether the type of muscle fiber, oxidative or glycolytic fiber, is an important determinant of lipid-mediated insulin resistance. Here we utilized transgenic mice to test the hypothesis that lipid accumulation specifically in glycolytic muscle promotes insulin resistance. Overexpression of DGAT2, which encodes an acyl-CoA:diacylglycerol acyltransferase that catalyzes triacylglycerol (TG) synthesis, in glycolytic muscle of mice increased the content of TG, ceramides, and unsaturated long-chain fatty acyl-CoAs in young adult mice. This lipid accumulation was accompanied by impaired insulin signaling and insulin-mediated glucose uptake in glycolytic muscle and impaired whole body glucose and insulin tolerance. We conclude that DGAT2-mediated lipid deposition specifically in glycolytic muscle promotes insulin resistance in this tissue and may contribute to the development of diabetes.  相似文献   

3.
Trivalent chromium [Cr(III)] has been shown as an essential trace element for human health. Previous studies depict that Cr(III) plays important roles in maintaining normal glucose and lipid metabolism, whereas its effect on the hepatic lipid metabolism is still unknown. In the present study, we investigated the effects and underlying mechanisms of Cr on hepatic steatosis induced by oleic acid (OA) in human hepatoma SMMC-7721 cells. Hepatic steatosis model was co-administered with Cr. Indexes of lipid accumulation were determined and associated genes expression were analyzed. The data showed that OA could induce lipid accumulation and triglyceride (TG) content in SMMC-7721 cells, and significantly increase the expression of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). This steatosis effect of OA was ameliorated by Cr. The TG accumulation and up-regulation of CD36 and DGAT2 genes followed steatosis induction were inhibited by Cr. After the treatment of Cr, excessive intracellular OA content was also attenuated. Furthermore, Cr still performed inhibitory effect of DGAT2 expression at the presence of DGAT2 agonist or inhibitor, which indicated that the inhibitory effect of Cr on lipogenesis is associated with the downregulation of DGAT2 expression. These findings demonstrate that Cr alleviates hepatic steatosis via suppressing CD36 expression to prevent fatty acid uptake, as well as suppressing DGAT2 expression to inhibit TG synthesis. It suggests that CD36 and DGAT2 might become the novel drug targets for their properties in hepatic steatosis. Most importantly, Cr may be a potential anti-steatosis candidate to offer protective effects against liver damage.  相似文献   

4.
Acyl-CoA:diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the formation of triglyceride (TG) from acyl-CoA and diacylglycerol. Two DGATs have been identified which belong to two distinct gene families and both are ubiquitously expressed. DGAT2 knockout mice are lipopenic and die shortly after birth. In the current study, wild type mice were treated with increasing doses (25-60 mg/kg twice weekly) of a DGAT2 gene-specific antisense oligonucleotide (ASO). Treatment resulted in a dose dependent decrease in hepatic DGAT2 gene expression (up to 80%) which was associated with a 40% decrease in hepatic DGAT2 activity and a 45% decrease in hepatic TG. Decreased levels of DGAT2 resulted in a significant dose dependent decrease in VLDL TG secretion (up to 52%) and reduced plasma TG, total cholesterol, and ApoB. Similar results were obtained when DGAT1 KO mice were treated with the DGAT2 ASO. Treatment of ob/ob mice with the DGAT2 ASO resulted in significant decreases in weight gain (10%), adipose weight (25%) and hepatic TG content (80%). Our findings indicate that the majority of TG destined for secretion by liver is synthesized by DGAT2 and suggests that DGAT2 may be a therapeutic target for treatment of hypertriglyceridemia, hepatic steatosis and obesity.  相似文献   

5.
Fasting readily induces hepatic steatosis. Hepatic steatosis is associated with hepatic insulin resistance. The purpose of the present study was to document the effects of 16 h of fasting in wild-type mice on insulin sensitivity in liver and skeletal muscle in relation to 1) tissue accumulation of triglycerides (TGs) and 2) changes in mRNA expression of metabolically relevant genes. Sixteen hours of fasting did not show an effect on hepatic insulin sensitivity in terms of glucose production in the presence of increased hepatic TG content. In muscle, however, fasting resulted in increased insulin sensitivity, with increased muscle glucose uptake without changes in muscle TG content. In liver, fasting resulted in increased mRNA expression of genes promoting gluconeogenesis and TG synthesis but in decreased mRNA expression of genes involved in glycogenolysis and fatty acid synthesis. In muscle, increased mRNA expression of genes promoting glucose uptake, as well as lipogenesis and beta-oxidation, was found. In conclusion, 16 h of fasting does not induce hepatic insulin resistance, although it causes liver steatosis, whereas muscle insulin sensitivity increases without changes in muscle TG content. Therefore, fasting induces differential changes in tissue-specific insulin sensitivity, and liver and muscle TG contents are unlikely to be involved in these changes.  相似文献   

6.
Mice deficient in acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in triacylglycerol (TG) biosynthesis, are resistant to high-fat (HF) diet-induced hepatic steatosis and obesity. DGAT1-deficient (Dgat1−/−) mice have no defect in quantitative absorption of dietary fat; however, they have abnormally high levels of TG stored in the cytoplasm of enterocytes, and they have a reduced postprandial triglyceridemic response. We generated mice expressing DGAT1 only in the intestine (Dgat1IntONLY) to determine whether this phenotype contributes to resistance to HF diet-induced hepatic steatosis and obesity in Dgat1−/− mice. Despite lacking DGAT1 in liver and adipose tissue, we found that Dgat1IntONLY mice are not resistant to HF diet-induced hepatic steatosis or obesity. The results presented demonstrate that intestinal DGAT1 stimulates dietary fat secretion out of enterocytes and that altering this cellular function alters the fate of dietary fat in specific tissues.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase C epsilon activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase C epsilon activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.  相似文献   

8.
Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the terminal step in triacylglycerol synthesis, have enhanced insulin sensitivity and are protected from obesity, a result of increased energy expenditure. In these mice, factors derived from white adipose tissue (WAT) contribute to the systemic changes in metabolism. One such factor, adiponectin, increases fatty acid oxidation and enhances insulin sensitivity. To test the hypothesis that adiponectin is required for the altered energy and glucose metabolism in DGAT1-deficient mice, we generated adiponectin-deficient mice and introduced adiponectin deficiency into DGAT1-deficient mice by genetic crosses. Although adiponectin-deficient mice fed a high-fat diet were heavier, exhibited worse glucose tolerance, and had more hepatic triacylglycerol accumulation than wild-type controls, mice lacking both DGAT1 and adiponectin, like DGAT1-deficient mice, were protected from diet-induced obesity, glucose intolerance, and hepatic steatosis. These findings indicate that adiponectin is required for normal energy, glucose, and lipid metabolism but that the metabolic changes induced by DGAT1-deficient WAT are independent of adiponectin and are likely due to other WAT-derived factors. Our findings also suggest that the pharmacological inhibition of DGAT1 may be useful for treating human obesity and insulin resistance associated with low circulating adiponectin levels.  相似文献   

9.
Acyl-CoA:diacylglycerol acyltransferases (DGATs) catalyze the last step in triglyceride (TG) synthesis. The genes for two DGAT enzymes, DGAT1 and DGAT2, have been identified. To examine the roles of liver DGAT1 and DGAT2 in TG synthesis and very low density lipoprotein (VLDL) secretion, liver DGAT1- and DGAT2-overexpressing mice were created by adenovirus-mediated gene transfection. DGAT1-overexpressing mice had markedly increased DGAT activity in the presence of the permeabilizing agent alamethicin. This suggests that DGAT1 possesses latent DGAT activity on the lumen of the endoplasmic reticulum. DGAT1-overexpressing mice showed increased VLDL secretion, resulting in increased gonadal (epididymal or parametrial) fat mass but not subcutaneous fat mass. The VLDL-mediated increase in gonadal fat mass might be due to the 4-fold greater expression of the VLDL receptor protein in gonadal fat than in subcutaneous fat. DGAT2-overexpressing mice had increased liver TG content, but VLDL secretion was not affected. These results indicate that DGAT1 but not DGAT2 has a role in VLDL synthesis and that increased plasma VLDL concentrations may promote obesity, whereas increased DGAT2 activity has a role in steatosis.  相似文献   

10.
Obese obob mice with strong overexpression of the human apolipoprotein C1 (APOC1) exhibit excessive free fatty acid (FFA) and triglyceride (TG) levels and severely reduced body weight (due to the absence of subcutaneous adipose tissue) and skin abnormalities. To evaluate the effects of APOC1 overexpression on hepatic and peripheral insulin sensitivity in a less-extreme model, we generated obob mice with mild overexpression of APOC1 (obob/APOC1(+/-)) and performed hyperinsulinemic clamp analysis. Compared with obob littermates, obob/APOC1(+/-) mice showed reduced body weight (-25%) and increased plasma levels of TG (+632%), total cholesterol (+134%), FFA (+65%), glucose (+73%), and insulin (+49%). Hyperinsulinemic clamp analysis revealed severe whole-body and hepatic insulin resistance in obob/APOC1(+/-) mice and, in addition, increased hepatic uptake of FFA and hepatic TG content. Treatment of obob/APOC1(+/-) mice with rosiglitazone strongly improved whole-body insulin sensitivity as well as hepatic insulin sensitivity, despite a further increase of hepatic fatty acid (FA) uptake and a panlobular increase of hepatic TG accumulation. We conclude that overexpression of APOC1 prevents rosiglitazone-induced peripheral FA uptake leading to severe hepatic steatosis. Interestingly, despite rosiglitazone-induced hepatic steatosis, hepatic insulin sensitivity improves dramatically. We hypothesize that the different hepatic fat accumulation and/or decrease in FA intermediates has a major effect on the insulin sensitivity of the liver.  相似文献   

11.
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2Int mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.  相似文献   

12.
Kenerson HL  Yeh MM  Yeung RS 《PloS one》2011,6(3):e18075
Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This 'resistant' phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism.  相似文献   

13.
PURPOSE OF REVIEW: Nonalcoholic fatty liver disease is a spectrum of diseases ranging from simple steatosis to cirrhosis. The hallmark of nonalcoholic fatty liver disease is hepatocyte accumulation of triglycerides. We will review the role of triglyceride synthesis in nonalcoholic fatty liver disease progression and summarize recent findings about triglyceride synthesis inhibition and prevention of progressive disease. RECENT FINDINGS: Attempts to inhibit triglyceride synthesis in animal models have resulted in improvement in hepatic steatosis. Studies in animal models of nonalcoholic fatty liver disease demonstrate that inhibition of acyl-coenzyme A:diacylglycerol acyltransferase, the enzyme that catalyzes the final step in triglyceride synthesis, results in improvement in hepatic steatosis and insulin sensitivity. We recently confirmed that hepatic specific inhibition of acyl-coenzyme A:diacylglycerol acyltransferase with antisense oligonucleotides improves hepatic steatosis in obese, diabetic mice but, unexpectedly, exacerbated injury and fibrosis in that model of progressive nonalcoholic fatty liver disease. When hepatocyte triglyceride synthesis was inhibited, free fatty acids accumulated in the liver, leading to induction of fatty acid oxidizing systems that increased hepatic oxidative stress and liver damage. These findings suggest that the ability to synthesize triglycerides may, in fact, be protective in obesity. SUMMARY: Nonalcoholic fatty liver disease is strongly associated with obesity and peripheral insulin resistance. Peripheral insulin resistance increases lipolysis in adipose depots, promoting increased free fatty acid delivery to the liver. In states of energy excess, such as obesity, the latter normally triggers hepatic triglyceride synthesis. When hepatic triglyceride synthesis is unable to accommodate increased hepatocyte free fatty acid accumulation, however, lipotoxicity results. Thus, rather than being hepatotoxic, liver triglyceride accumulation is actually hepato-protective in obese, insulin-resistant individuals.  相似文献   

14.
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low‐grade hepatic steatosis which further progresses in an age‐dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown. We hypothesized that genetic ghrelin deletion will protect against the development of age‐related hepatic steatosis. To examine this hypothesis, we utilized ghrelin knockout (KO) mice. Although no different in young animals (3 months old), we found that at 20 months of age, ghrelin KO mice have significantly reduced hepatic steatosis compared to aged‐matched wild‐type (WT) mice. Examination of molecular pathways by which deletion of ghrelin reduces steatosis showed that the increase in expression of diacylglycerol O‐acyltransferase‐1 (DGAT1), one of the key enzymes of triglyceride (TG) synthesis, seen with age in WT mice, is not present in KO mice. This was due to the lack of activation of CCAAT/enhancer binding protein‐alpha (C/EBPα) protein and subsequent reduction of C/EBPα‐p300 complexes. These complexes were abundant in livers of old WT mice and were bound to and activated the DGAT1 promoter. However, the C/EBPα‐p300 complexes were not detected on the DGAT1 promoter in livers of old KO mice resulting in lower levels of the enzyme. In conclusion, these studies demonstrate the mechanism by which ghrelin deletion prevents age‐associated hepatic steatosis and suggest that targeting this pathway may offer therapeutic benefit for NAFLD.  相似文献   

15.
Role of ChREBP in hepatic steatosis and insulin resistance   总被引:1,自引:0,他引:1  
  相似文献   

16.
SH2B1 is an SH2 and PH domain-containing adaptor protein. Genetic deletion of SH2B1 results in obesity, type 2 diabetes, and fatty liver diseases in mice. Mutations in SH2B1 are linked to obesity in humans. SH2B1 in the brain controls energy balance and body weight at least in part by enhancing leptin sensitivity in the hypothalamus. SH2B1 in peripheral tissues also regulates glucose and lipid metabolism, presumably by enhancing insulin sensitivity in peripheral metabolically-active tissues. However, the function of SH2B1 in individual peripheral tissues is unknown. Here we generated and metabolically characterized hepatocyte-specific SH2B1 knockout (HKO) mice. Blood glucose and plasma insulin levels, glucose tolerance, and insulin tolerance were similar between HKO, albumin-Cre, and SH2B1f/f mice fed either a normal chow diet or a high fat diet (HFD). Adult-onset deletion of SH2B1 in the liver either alone or in combination with whole body SH2B2 knockout also did not exacerbate HFD-induced insulin resistance and glucose intolerance. Adult-onset, but not embryonic, deletion of SH2B1 in the liver attenuated HFD-induced hepatic steatosis. In agreement, adult-onset deletion of hepatic SH2B1 decreased the expression of diacylglycerol acyltransferase-2 (DGAT2) and increased the expression of adipose triglyceride lipase (ATGL). Furthermore, deletion of liver SH2B1 in SH2B2 null mice attenuated very low-density lipoprotein (VLDL) secretion. These data indicate that hepatic SH2B1 is not required for the maintenance of normal insulin sensitivity and glucose metabolism; however, it regulates liver triacylglycerol synthesis, lipolysis, and VLDL secretion.  相似文献   

17.
Fatty liver disease is associated with obesity and type 2 diabetes, and hepatic lipid accumulation may contribute to insulin resistance. Histone deacetylase 3 (Hdac3) controls the circadian rhythm of hepatic lipogenesis. Here we show that, despite severe hepatosteatosis, mice with liver-specific depletion of Hdac3 have higher insulin sensitivity without any changes in insulin signaling or body weight compared to wild-type mice. Hdac3 depletion reroutes metabolic precursors towards lipid synthesis and storage within lipid droplets and away from hepatic glucose production. Perilipin 2, which coats lipid droplets, is markedly induced upon Hdac3 depletion and contributes to the development of both steatosis and improved tolerance to glucose. These findings suggest that the sequestration of hepatic lipids in perilipin 2–coated droplets ameliorates insulin resistance and establish Hdac3 as a pivotal epigenomic modifier that integrates signals from the circadian clock in the regulation of hepatic intermediary metabolism.  相似文献   

18.
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80–95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.  相似文献   

19.
Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.  相似文献   

20.
Non-alcoholic fatty liver disease is a common metabolic disorder associated with insulin resistance and lacks a specific treatment. Our previous studies demonstrated that freeze-dried Saskatoon berry powder (SBp) reduced high fat-high sucrose (HFHS) diet-induced hyperglycemia and insulin resistance in mice. The present study examined the effect of SBp and one of its active components, cyanidin-3-glucoside (C3G), on hepatic steatosis in mice fed with HFHS diet for 10 weeks. HFHS diet significantly increased fasting plasma glucose, cholesterol, triglycerides, insulin resistance, inflammatory markers (tumor necrosis factor-α, monocyte chemotactic protein-1, plasminogen activator inbitor-1), alanine aminotransferase activity, and monocyte adhesion compared to control diet. In the liver, HFHS diet increased steatosis, lipid accumulation, collagen deposition, and the abundance of patatin-like phospholipase domain-containing 3, CCAAT-enhancer-binding protein homologous protein, toll-like receptor-4, and macrophage marker. Supplementation with SBp (5%) or C3G in an amount corresponding to that in 5% SBp to HFHS diet had similar effects to reduced fasting plasma glucose, liver steatosis, enzyme activity, lipid, collagen and macrophage deposition, hyperglycemia, hyperlipidemia, insulin resistance, monocyte adhesion, markers related to liver steatosis, inflammation, oxidative or endoplasmic reticulum stress in the peripheral circulation and/or liver compared to mice fed with HFHS diet alone. No significant difference in the studied variables was detected between mice treated with HFHS+SBp and C3G diet. The results suggest that SBp or C3G administration attenuates HFHS diet-induced liver steatosis in addition to insulin resistance and chronic inflammation in mice. C3G may contribute to the beneficial effects of SBp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号