首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we described a model which treats ion channel gating as a discrete diffusion problem. In the case of agonist-activated channels at high agonist concentration, the model predicts that the closed lifetime probability density function from single channel recording approximates a power law with an exponent of -3/2 (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988a. Proc. Natl. Acad. Sci. USA. 85: 1503-1507). This prediction is consistent with distributions derived from a number of ligand-gated channels at high agonist concentration (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988b. Biophys. J. 54: 1165-1168.) but does not describe the behavior of ion channels at low activator concentrations. We examine here an extension of this model to include an agonist binding step. This extended model is consistent with the closed time distributions generated from the BC3H-1 nicotinic acetylcholine receptor for agonist concentrations varying over three orders of magnitude.  相似文献   

2.
There have been many attempts to develop a theoretical explanation of the phenomena of electromagnetic field interactions with biological systems. None of the reported efforts have been entirely successful in accounting for the observed experimental results, in particular with respect to the reports of interactions between extremely low frequency (ELF) magnetic fields and biological systems at ion cyclotron resonance frequencies. The approach used in this paper starts with the Lorentz force equation, but use is made of cylindrical co-ordinates and cylindrical boundary conditions in an attempt to more closely model the walls of an ion channel. The equations of motion of an ion that result from this approach suggest that the inside shape of the channel plus the ELF magnetic fields at specific frequencies and amplitudes could act as a gate to control the movement of the ion across the cell membrane.  相似文献   

3.
Stomatin modulates gating of acid-sensing ion channels   总被引:3,自引:0,他引:3  
Acid-sensing ion channels (ASICs) are H(+)-gated members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family in vertebrate neurons. Several ASICs are expressed in sensory neurons, where they play a role in responses to nociceptive, taste, and mechanical stimuli; others are expressed in central neurons, where they participate in synaptic plasticity and some forms of learning. Stomatin is an integral membrane protein found in lipid/protein-rich microdomains, and it is believed to regulate the function of ion channels and transporters. In Caenorhabditis elegans, stomatin homologs interact with DEG/ENaC channels, which together are necessary for normal mechanosensation in the worm. Therefore, we asked whether stomatin interacts with and modulates the function of ASICs. We found that stomatin co-immunoprecipitated and co-localized with ASIC proteins in heterologous cells. Moreover, stomatin altered the function of ASIC channels. Stomatin potently reduced acid-evoked currents generated by ASIC3 without changing steady state protein levels or the amount of ASIC3 expressed at the cell surface. In contrast, stomatin accelerated the desensitization rate of ASIC2 and heteromeric ASICs, whereas current amplitude was unaffected. These data suggest that stomatin binds to and alters the gating of ASICs. Our findings indicate that modulation of DEG/ENaC channels by stomatin-like proteins is evolutionarily conserved and may have important implications for mammalian nociception and mechanosensation.  相似文献   

4.
In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain.  相似文献   

5.
Analysis of post-perturbation gating kinetics of single ion channels   总被引:1,自引:0,他引:1  
Analysis of mean dwell-times as a function of the number of channel openings elapsed since a stepwise perturbation in ion-channel kinetics is shown to provide information concerning the topology of the underlying gating mechanism. The difference between the post-perturbation mean dwell-time and the corresponding equilibrium mean is shown to decay as the sum of Ng-1 geometric terms in k, the number of openings since the perturbation, where Ng is the minimum number of gateway states in the channel gating mechanism. The method is illustrated by consideration of various simple gating schemes. A modification of the method accommodating the presence of channel inactivation or desensitization is described. Application of the method to a delayed-rectifier type K+ channel of NG108-15 cells reveals that Ng greater than or equal to 2, consistent with a branched gating mechanism.  相似文献   

6.
Antifungal lipodepsipeptide syringomycin E (SRE) forms two major conductive states in lipid bilayers: "small" and "large". Large SRE channels are cluster of several small ones, demonstrating synchronous opening and closure. To get insight into the mechanism of such synchronization we investigated how transmembrane potential, membrane surface charge, and ionic strength affect the number of small SRE channels synchronously functioning in the cluster. Here, we report that the large SRE channels can be presented as 3-8 simultaneously gating small channels. The increase in the absolute value of the transmembrane potential (from 50 to 200 mV) decreases the number of synchronously gated channels in the clusters. Voltage-dependence of channel synchronization was influenced by the ionic strength of the bathing solution, but not by membrane surface charge. We propose a mechanism for the voltage-dependent cluster behavior that involves a voltage-induced reorientation of lipid dipoles associated with the channel pores.  相似文献   

7.
The opening of voltage-gated sodium, potassium, and calcium ion channels has a steep relationship with voltage. In response to changes in the transmembrane voltage, structural movements of an ion channel that precede channel opening generate a capacitative gating current. The net gating charge displacement due to membrane depolarization is an index of the voltage sensitivity of the ion channel activation process. Understanding the molecular basis of voltage-dependent gating of ion channels requires the measurement and computation of the gating charge, Q. We derive a simple and accurate semianalytic approach to computing the voltage dependence of transient gating charge movement (Q–V relationship) of discrete Markov state models of ion channels using matrix methods. This approach allows rapid computation of Q–V curves for finite and infinite length step depolarizations and is consistent with experimentally measured transient gating charge. This computational approach was applied to Shaker potassium channel gating, including the impact of inactivating particles on potassium channel gating currents.  相似文献   

8.
The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (one in repeat I and the other in repeat IV) that align with Glu residues previously implicated in forming the binding sites for gating modifier toxins on K(+) and Na(+) channels. We found that mutation of the Glu residue in repeat I of the Ca(2+) channel had no significant effect on inhibition by omega-Aga-IVA, whereas the equivalent mutation of the Glu in repeat IV disrupted inhibition by the toxin. These results suggest that the COOH-terminal end of S3 within repeat IV contributes to forming a receptor for omega-Aga-IVA. The strong predictive value of previous mapping studies for K(+) and Na(+) channel toxins argues for a conserved binding motif for gating modifier toxins within the voltage-sensing domains of voltage-gated ion channels.  相似文献   

9.
For ligand-gated ion channels, the binding of a ligand to an intracellular or extracellular domain generates changes in transmembrane pore-forming helices, which alters ion flow. The molecular mechanism for this allostery, however, remains unknown. Here we explore the structure and conformational rearrangements of the C-terminal gating ring of the cyclic nucleotide-gated channel CNGA1 during activation by cyclic nucleotides with patch-clamp fluorometry. By monitoring fluorescent resonance energy transfer (FRET) between membrane-resident quenchers and fluorophores attached to the channel, we detected no movement orthogonal to the membrane during channel activation. By monitoring FRET between fluorophores within the C-terminal region, we determined that the C-terminal end of the C-linker and the end of the C-helix move apart when channels open. We conclude that during channel activation, a portion of the gating ring moves parallel to the plasma membrane, hinging toward the central axis of the channel.  相似文献   

10.
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water.  相似文献   

11.
电压依赖性离子通道门控的分子机制   总被引:5,自引:0,他引:5  
Lu GW 《生理科学进展》1997,28(4):306-310
50年代Hodgkin和Huxley双通道模型及其激活与失活学说,正逐步被80年代以来的分子生物学和电生理学研究所证实。Na^+、K^+离子通道的激活主要决定于高度保守的带正电荷氨基酸残基密集的S4段,由膜内向膜外方向的拧改锥样旋转。Na^+通道的失活主要与其Ⅲ-Ⅳ功能区之间的胞内连结襻的“铰链盖”样运动有关;K^+通的失活分N-、C-、P-三型,分别发生在N-、C-末端和P区,其N型失活与N-末  相似文献   

12.
Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown. The TRPM8 cation channel has been extensively investigated as a major neuronal cold sensor but is also activated by voltage, calcium store depletion, and some lipids as well as by compounds that produce cooling sensations, such as menthol or icilin. Several models of TRPM8 activation have been proposed to explain the interaction between these diverse stimuli. However, a kinetic scheme is not yet available that can describe the detailed single-channel kinetics to gain further insight into the underlying gating mechanism. To work toward this goal, we investigated voltage-dependent single-channel gating in cell-attached patches at two different temperatures (20 and 30 °C) using HEK293 cells stably expressing TRPM8. Both membrane depolarization and cooling increased channel open probability (P(o)) mainly by decreasing the duration of closed intervals, with a smaller increase in the duration of open intervals. Maximum likelihood analysis of dwell times at both temperatures indicated gating in a minimum of five closed and two open states, and global fitting over a wide range of voltages identified a seven-state model that described the voltage dependence of P(o), the single-channel kinetics, and the response of whole-cell currents to voltage ramps and steps. The major action of depolarization and cooling was to accelerate forward transitions between the same two sets of adjacent closed states. The seven-state model provides a general mechanism to account for TRPM8 activation by membrane depolarization at two temperatures and can serve as a starting point for further investigations of multimodal TRP activation.  相似文献   

13.
14.
Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides.  相似文献   

15.
Excitability phenomena in planar lipid bilayers doped with alamethicin and protamines have been first described by Mueller and Rudin (Nature 217, 713-719, 1968). These properties are reinvestigated here with virtually solvent-free bilayers made of synthetic phospholipids doped with alamethicin charged component (Glu18) and protamine or other synthetic basic polypeptides. After retrieving the narrow set of experimental requisites allowing negative resistance and action potentials to develop, the potencies of different basic polypeptides were compared. Poly-arginines were found to be by far the most efficient. We also describe a transient increase of current amplitude upon addition of calcium that may reflect a lateral phase separation and conversely a gradual decrease of negative resistance due to tetrodotoxin, a potent sodium channel blocker. Functional modulations are correlated with conformational changes assayed in circular dichroism: alamethicin ellipticity in small unilamellar vesicles is markedly reduced upon protamine addition, only if the ionic strength is in the same low range that is compatible with regenerative conductance properties. These results are discussed in the framework of current models of ion channels gating.  相似文献   

16.
Integrated allosteric model of voltage gating of HCN channels   总被引:8,自引:0,他引:8  
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, activation deviating from fixed power of an exponential, removal of activation "delay" by preconditioning hyperpolarization. Previous work on native channels has indicated that the shifting action of cAMP on the open probability (Po) curve can be accounted for by an allosteric model, whereby cAMP binds more favorably to open than closed channels. We therefore asked whether not only cAMP-dependent, but also voltage-dependent gating of hyperpolarization-activated channels could be explained by an allosteric model. We hypothesized that HCN channels are tetramers and that each subunit comprises a voltage sensor moving between "reluctant" and "willing" states, whereas voltage sensors are independently gated by voltage, channel closed/open transitions occur allosterically. These hypotheses led to a multistate scheme comprising five open and five closed channel states. We estimated model rate constants by fitting first activation delay curves and single exponential time constant curves, and then individual activation/deactivation traces. By simply using different sets of rate constants, the model accounts for qualitative and quantitative aspects of voltage gating of all three HCN isoforms investigated, and allows an interpretation of the different kinetic properties of different isoforms. For example, faster kinetics of HCN1 relative to HCN2/HCN4 are attributable to higher HCN1 voltage sensors' rates and looser voltage-independent interactions between subunits in closed/open transitions. It also accounts for experimental evidence that reduction of sensors' positive charge leads to negative voltage shifts of Po curve, with little change of curve slope. HCN voltage gating thus involves two processes: voltage sensor gating and allosteric opening/closing.  相似文献   

17.
18.
Dutzler R 《FEBS letters》2004,564(3):229-233
Members of the ClC family of voltage-gated chloride channels are found from bacteria to mammals with a considerable degree of conservation in the membrane-inserted, pore-forming region. The crystal structures of the ClC channels of Escherichia coli and Salmonella typhimurium provide a structural framework for the entire family. The ClC channels are homodimeric proteins with an overall rhombus-like shape. Each ClC dimer has two pores each contained within a single subunit. The ClC subunit consists of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a chloride selectivity filter within the 15-A neck of a hourglass-shaped pore. Three Cl(-) binding sites within the selectivity filter stabilize ions by interactions with alpha-helix dipoles and by chemical interactions with nitrogen atoms and hydroxyl groups of residues in the protein. The Cl(-) binding site nearest the extracellular solution can be occupied either by a Cl(-) ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl(-) ion.  相似文献   

19.
In this article, the three-dimensional motion of an ion within a molecular channel is discussed for the first time; escape rates from binding sites are calculated using the transition state method. For a given ligand configuration and a particular pore radius the rates depend upon ion size and mass. It is found that the activation energies depend strongly on the ion size, i.e., they increase with decreasing ion radius. In contrast to the rates obtained from the mass dependence alone, the rates depending on both mass and size of the alkali ions yield the completely inverted sequence, namely the Eisenman sequence I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号