首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During seed development and maturation, large amounts of storage proteins are synthesized and deposited in protein storage vacuoles (PSVs). Multiple mechanisms have been proposed to be responsible for transporting storage proteins to PSVs in developing seeds. In this study, a specific antibody was raised against the mung bean (Vigna radiata) seed storage protein 8S globulin and its deposition was followed via immunogold electron microscopy in developing mung bean cotyledons. It is demonstrated that non-aggregated 8S globulins are present in multivesicular bodies (MVBs) in early stages of cotyledon development where neither dense vesicles (DVs) nor a PSV were recognizable. However, at later stages of cotyledon development, condensed globulins were visible in both DVs and distinct MVBs with a novel form of partitioning, with the internal vesicles being pushed to one sector of this organelle. These distinct MVBs were no longer sensitive to wortmannin. This study thus indicates a possible role for MVBs in transporting storage proteins to PSVs during the early stage of seed development prior to the involvement of DVs. In addition, wortmannin treatment is shown to induce DVs to form aggregates and to fuse with the plasma membrane.  相似文献   

2.
Wang J  Li Y  Lo SW  Hillmer S  Sun SS  Robinson DG  Jiang L 《Plant physiology》2007,143(4):1628-1639
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.  相似文献   

3.
The protein storage vacuole (PSV) is a specialized organelle in plant seeds that accumulates storage proteins and phytate during seed development. In many plant species, such as tomato and tobacco, the PSV contains two types of microscopically visible intra-organellar inclusions: a large crystalline lattice of membranes and proteins, the crystalloid, and one or a few large phytate crystals, the globoids. In seeds of the family Brassicaceae, the PSVs lack visible crystalloids and have many small globoids dispersed throughout. We biochemically fractionated PSVs from Brassica napus and defined a crystalloid-like fraction that contained integral membrane protein markers found in crystalloids of other plants. Protein analyses identified a previously undescribed family of proteins, the Brassicaceae PSV-embedded proteins (BPEPs), associated with 'crystalloid' and globoid fractions. The defining characteristics of the BPEPs are an N-terminal signal peptide and tandem MATH domains, which may mediate protein-protein interactions. Database analyses indicated that the BPEPs are unique to Brassicaceae. Immunofluorescence studies using anti-BPEP antibodies and antibodies to other biochemical markers to label B. napus and Arabidopsis thaliana seed sections localized the BPEPs to structures within the PSVs, whose appearance was consistent with a diffuse network of internalized membranes and globoids. These results demonstrate that Brassicaceae PSVs contain internalized membranes, and raise the possibility that BPEPs modify these internal membrane structures to yield a PSV morphology different from that of tomato or tobacco.  相似文献   

4.
应用透射电镜技术对荞麦(Fagopyrum esculentum)子叶和糊粉层细胞中贮藏蛋白质的积累过程进行了研究。荞麦开花后15天,胚乳最外细胞的液泡中开始积累蛋白质。开花后25天,最外层胚乳细胞中积累较多的糊粉粒(直径1-2μm)形成糊粉层。开花后20天,子叶细胞中蛋白质开始在液泡和细胞质中积累,同时液泡通过膜的向内生长和缢裂两种方式形成体积较小的液泡。开花后25天,成熟的子叶细胞中含有丰富的蛋白质,贮藏蛋白质主要积累在液泡中形成体积较大的蛋白质贮藏液泡(PSVs,protein storage vacuoles,直径1-3μm)。在荞麦子叶积累蛋白质的各个阶段,细胞质中都有一些来源于高尔基体,含蛋白质的电子不透明小泡(直径0.1-0.7μm)存在,观察到有些小泡正进入液泡,推断这种来自高尔基体膜囊的小泡不仅将蛋白质运输到液泡形成PSVs的作用,也可能是荞麦成熟子叶积累贮藏蛋白质的一种结构。  相似文献   

5.
植物种子贮藏蛋白质及其细胞内转运与加工   总被引:1,自引:0,他引:1  
韩宝达  李立新 《植物学报》2010,45(4):492-505
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同, 种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中, 醇溶蛋白在粗面内质网合成后形成蛋白质聚集体, 直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后, 根据各自的分选信号进入特定的运输囊泡, 经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中, 然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。  相似文献   

6.
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.  相似文献   

7.
Miao Y  Yan PK  Kim H  Hwang I  Jiang L 《Plant physiology》2006,142(3):945-962
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.  相似文献   

8.
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.  相似文献   

9.
We used in situ hybridization to investigate Kunitz trypsin inhibitor gene expression programs at the cell level in soybean embryos and in transformed tobacco seeds. The major Kunitz trypsin inhibitor mRNA, designated as KTi3, is first detectable in a specific globular stage embryo region, and then becomes localized within the axis of heart, cotyledon, and maturation stage embryos. By contrast, a related Kunitz trypsin inhibitor mRNA class, designated as KTi1/2, is not detectable during early embryogenesis. Nor is the KTi1/2 mRNA detectable in the axis at later developmental stages. Outer perimeter cells of each cotyledon accumulate both KTi1/2 and KTi3 mRNAs early in maturation. These mRNAs accumulate progressively from the outside to inside of each cotyledon in a "wave-like" pattern as embryogenesis proceeds. A similar KTi3 mRNA localization pattern is observed in soybean somatic embryos and in transformed tobacco seeds. An unrelated mRNA, encoding [beta]-conglycinin storage protein, also accumulates in a wave-like pattern during soybean embryogenesis. Our results indicate that cell-specific differences in seed protein gene expression programs are established early in development, and that seed protein mRNAs accumulate in a precise cellular pattern during seed maturation. We also show that seed protein gene expression patterns are conserved at the cell level in embryos of distantly related plants, and that these patterns are established in the absence of non-embryonic tissues.  相似文献   

10.
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同,种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中,醇溶蛋白在粗面内质网合成后形成蛋白质聚集体,直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后,根据各自的分选信号进入特定的运输囊泡,经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中,然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。  相似文献   

11.
The low molecular weight seed storage protein of Brassica campestris has been isolated and its amino acid composition determined. Antibody raised against this low molecular weight protein has been used to compare the antigenic similarity between the low molecular weight storage proteins of different Cruciferae seeds by immunoprecipitation and Western blotting. These studies revealed the existence of antigenically homologous proteins of identical molecular weights in seeds of other Cruciferae but absent in some other dicots like mung bean and tobacco seeds.  相似文献   

12.
The hybridization kinetics of poly(A)+-RNA preparations from the cotyledons of developing pea (Pisum sativum seeds to complementary DNAs have shown that the number of distinct sequences in poly(A)+ -RNA decreases from ca 20 000 at the early stage of cotyledon development to ca 200 at a late stage of cotyledon development. The decrease in sequences is accounted for entirely by the disappearance of ‘rare’ poly(A)+ -RNAs (< 103 copies/cell) as seed development proceeds. There is an increase (1–6) in very abundant poly(A)+-RNA sequences (? 5 × 105 copies/cell) from early- to mid-developmental stages, concomitantly with the increase in the synthesis of seed-specific storage protein polypeptides. In agreement with the continuing synthesis of most of these polypeptides to the end of seed development, the number of very abundant poly(A)+-RNAs is maintained to the late cotyledon development stage. Abundant poly(A)+-RNA sequences (ca 104 sequences/cell) increase from 80 to 180 during development, possibly corresponding to the polypeptides which are not storage proteins but are known to be accumulated in pea seeds. Hybridization of single-copy pea genomic DNA sequences to poly(A)+-RNA from developing seeds showed that ca 5 % of the single-copy sequences were present in mRNA from mid-development cotyledons. In addition, hybridization of cDNA prepared against poly(A)+-RNA from nuclei of early development cotyledons to the corresponding cytoplasmic polysomal poly(A)+-RNA showed that the cytoplasmic poly(A)+-RNA contained ca 50 % of the sequences present in the nuclei. These results are discussed and interpreted in the light of existing results from similar systems.  相似文献   

13.
Many plant species contain a seed-specific tonoplast intrinsic protein (TIP) in their protein storage vacuoles (PSVs). Although the function of the protein is not known, its structure implies it to act as a transporter protein, possibly during storage nutrient accumulation/breakdown or during desiccation/imbibition of seeds. As mature somatic embryos of Picea abies (L.) Karst. (Norway spruce) contain PSVs, we examined the presence of TIP in them. Both the megagametophyte and seed embryo accumulate storage nutrients, but at different times and we therefore studied the temporal accumulation of TIP during seed development. Antiserum against the seed-specific a-TIP of Phaseolus vulgaris recognized an abundant 27 kDa tonoplast protein in mature seeds of P. abies. By immunogold labeling of sectioned mature megagametophytes we localized the protein to the PSV membrane. We also isolated the membranes of the PSVs from mature seeds and purified an integral membrane protein that reacted heavily with the antiserum. A sequence of 11 amino acid residues [AEEATHPDSIR], that was obtained from a polypeptide after in-gel trypsin digestion of the purified membrane protein, showed high local identity to a-TIP of Arabidopsis thaliana and to a-TIP of P. vulgaris. The greatest accumulation of TIP in the megagametophytes occurred at the time of storage protein accumulation. A lower molecular mass band also stained from about the time of fertilization until early embryo development. The staining of this band disappeared as the higher molecular mass (27 kDa) band accumulated in the megagametophyte during seed development. Total protein was also extracted from developing zygotic embryos and from somatic embryos. In zygotic embryos low-levels of TIP were seen at all stages investigated, but stained most at the time of storage protein accumulation. The protein was also present in mature somatic embryos but not in proliferating embryogenic tissues in culture. In addition to the seed tissue material, the antiserum also reacted with proteins present in extracts from roots and hypocotyls but not cotyledons from 13-day-old seedlings.  相似文献   

14.
In the cotyledon ceils of developing peanut (Arachis hypogaea L.) seeds, storage protein accumulates in the protein bodies. Protein deposition in the vacuoles does not take place until approximately 6 weeks after anthesis. By depositing onto the centre of the vacuoles at the early stage and depositing in the vacuolus as protein ceous lump or flocculent materials at the later stage, protein accumulates gradually to become a spherial protein body in the whole vacuole.  相似文献   

15.
The process of protein body formation from rough endoplasmicreticulum (RER) in cotyledon cells of soybean has been followed.From about 43 d after flowering (DAF), the lumen of some partsof RER cisternae was dilated and filled gradually with proteinaceousmaterial. This kind of dilated RER expanded further to formlong and irregularly shaped protein bodies (PBs), and the latterdivided into smaller spherical protein bodies in mature seedsat 63 DAF. From these results and our previous observations,we draw the conclusion that there are two pathways of proteinbody formation in developing cotyledon cells in soybean. Duringthe early stage, vacuoles in the cells were filled with proteinaceousmaterial and turned into protein bodies. During the late stage,some of the dilated RER with storage proteins developed intoPBs A few vacuoles can also form PBs at this late stage. Inaddition, some fibre structures, 7–8 nm in width, wereseen to be oriented in parallel in longitudinal sections ofRER cisternae in cotyledon cells at 45 DAF. Soybean, protein body, ER origin, storage protein  相似文献   

16.
17.
低浓度(5-10ngml-1)的鹅膏毒肽(amatoxins) 能专一性抑制RNA聚合酶Ⅱ的活性,高浓度(为RNA聚合酶Ⅱ103-104倍的浓度)也能抑制RNA聚合酶Ⅲ的活性,因而影响细胞mRNA的转录和蛋白质的合成,抑制种子的萌发和生长。根据此原理我们建立了一种以植物种子萌发试验检测鹅膏毒肽的方法,称之为“抑芽法”(bud-inhibited assay)。该方法简便、实用、准确。操作流程:45℃干燥至恒重的鹅膏菌等子实体菌盖;水提法提取毒素并用氯仿沉淀蛋白质等;粗毒液浓度为0.025-0.05gml-1干子实体;萝卜或绿豆种子培养温度为28℃,培养时间为24-72h。绿豆芽下胚轴生长被抑制率在95%以上,可能为鹅膏毒肽含量高的剧毒鹅膏菌;当被抑制率在60-80%,可能为鹅膏肽含量较低的微毒鹅膏菌;当被抑制率在30%以下时,可能是不含鹅膏菌肽的鹅膏菌。  相似文献   

18.
19.
Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.  相似文献   

20.
Phaseolin and lectin-related polypeptides, the abundant oligomeric glycoproteins of bean seeds, are synthesized on the endoplasmic reticulum (ER) and then transported to the storage vacuole via the Golgi apparatus. Glycosylation and folding are among the major modifications these proteins undergo in the ER. Although a recurrent role of N-glycosylation is on protein folding, in previous studies on common bean (Phaseolus vulgaris) seeds we demonstrated that the oligosaccharide side-chains are not required for folding, intracellular transport and activity of storage glycoproteins. We show here that in lima bean (Phaseolus lunatus), incubation of the developing cotyledon with tunicamycin to prevent glycosylation has a dramatic effect on the intracellular transport of the storage glycoproteins. When lacking their glycans, phaseolin and lectin-related polypeptides misfold and are retained in the ER as mixed aggregates to which the chaperone BiP irreversibly associates. The lumen of the ER becomes enlarged to accommodate the aggregated polypeptides. Intracellular transport of legumin, a naturally unglycosylated storage protein, is mostly unaffected by the inhibitor, indicating that the observed phenomenon specifically occurs on glycoproteins. Furthermore, recombinant lima bean phaseolin synthesized in tobacco protoplasts is also correctly folded and matured in the presence of tunicamycin. To our knowledge, this is the first report that describes in detail the block of intracellular transport of vacuolar glycoproteins in plant cells due to aggregation following glycosylation inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号